

$$
\begin{aligned}
& \text { H-y } \rightarrow+\infty \\
& 3, j 4 m=3 i \pi y
\end{aligned}
$$

$$
\begin{aligned}
& \text { 二小心 }
\end{aligned}
$$

$$
\begin{aligned}
& d^{2}+5-2=0 \\
& \text { Le: } 5 \\
& \text { the to } \\
& \text { Y) } \\
& \text { d. H2… } 4
\end{aligned}
$$

فهر ست عناوين شيهم عمو می

19 ــنظريدهاى اسيد و باز
I IV تعادل يونى، بخشى I IV
II ا ـ تعادل يونى، بخشـ، 19 19 ـ ـ مبانى ترموديناميك شيهيميايى . Yo

$$
\begin{aligned}
& \text { ـ ش } \\
& \text { YA ـ Y ـ شيمى آلى } \\
& \text { - }
\end{aligned}
$$

1- مقدهـهـ

¢ ـ ـ ساختار الكترونى اتمها
V

ا 1
11
| 1 ـ محاكلولها

10 ـ تعادل شيميايی

فهر ست محالب

$$
\begin{aligned}
& \text { r_r } \\
& \text { * } \\
& \text { O_r }
\end{aligned}
$$

$$
\begin{aligned}
& \text { I_Y ir }
\end{aligned}
$$

$$
\begin{aligned}
& \text { O_F is } \\
& \text { | } 9 \text { - F }
\end{aligned}
$$

$$
\begin{aligned}
& 19
\end{aligned}
$$

ت ا-1
r-1
r-1

جكيدة مطالب
مفاهيمكلبدى
مسسائل

نظريةُ اتمى دالتون
r-r
بُ بروتون
F_r

S Y Y
علد اتمى و جلدول تناوبى V-Y
A-r
Q
حكيدة عطالب
مفاهيم كليدى
مسائل

مولكولهاو يونها
فرمول تجربى \quad r-r

$$
p \pi-d \pi \text { بیبوند } \quad 9
$$

or Vr

Lojor ． 10
r－1。
r－10

V－10
A＿lo

$$
\text { هـ ـ ا } 11 \text { سرعتهاي عولكولمى }
$$

ها مابع شدن كاز ها
چجكده: مططالب
مفاهنمر كليلدى
مسائل

I I I I 11
Y_ll بيوند هيلدروزّنى
r－ 11
F－11
فـتـار بخار
9－11
V＿11
A－ 11

11 10 － 11

X X 11
1Y－ 11
10ـ11 10 بلورهأى يونى

AV
Y- Y اندازة اتمها
انرزیى يونش
r_V الكترون خواهى
Y-V Yبيوند يونى
O_Y انرئى شبكه
Y_V انواع يونها

خ．Y

نامُخذارى تركيبات يونى
مساهكيدهُ مطالبى
A• بيوند كووالانسى

$$
\begin{aligned}
& \text { r-9 } \\
& \text { (- - } 9 \\
& \text { P-9 } \\
& \text { O- } 9
\end{aligned}
$$

ryy		
HYY		
YYQ	(I- If	l/f
Ho	غ غ Y IF	1A9
rry	\%_1F	INV
TrY		1×1
rro	(O_ \|	119
rre	A. If	19.
rra		14.
Y41		19\%
YY\%		
THF	\%	195
r40	مفاهيمكليدى	191
	مسائل	194
		194
rfa	chanmi Joks . 10	Yoo
Y*4	10 10 ـ ا 10	Y01
Y01		YO1
YOF	K_{p} ¢ ${ }_{\text {H }}$ Y-10 10	
ros	F-10 اص- 10	rod
ron	\%	roos
ros		Tor
ron		Yoq
		Yir
T9\%		Yik
rve		Y10
ras		ris
\bigcirc ¢	g'	HA
+91	فا	r19
		Heor
		ryo

يادواشت متر.

غيرشيمبا يى بيان شلده است.

 ويزّاى شده است.

 تقسيم شدداند.

مسائل و ارجاع در كارهأى بعدى مفيد است.

 مشخص شدهاند.

 مسائل فرد در هيرست آخر كتاب آمده است.

 انززىى بيرندهاست. جارلز مورتيمر

003040

 فرورانى يانتـنـد:
 جهار عنعر (خاك، باد، آتش، و آب) با نسبتـهاي هـتفاوت تشكـيل

1. Leucippus
2. Democritus
3. Plato
4. Transmutation
5. Aristotle

 تغييرات شُـيميايي است.

ـ مى توان تقسيم كرد:

1 ـ ـدورة هنرهاى تجربى (از روزكار باستان تان سا سال

أتوان لاوازية (IVFT- IVAF)

د

 19 ا

草
和
2. Alchemy
4. miksit (elcui)
6. latrochemistry
8. The Sceptical Chymist 10. Georg Ernst Stahl

 آنها را به وجود آَورد.)

> نمرنها تشقطير، تبلور، و تصعيل) هستند.

[^0]

 ب - شـيمى معلدنى. شيمى آـمام عـنا

 استخرإ هستند.

 go "L. 2 تبديل هاى شيميايى،

 ليرو S

1. Calcination
2. Antone Lavoisier

2. Calx

5. Inertia
براساس نظريه فلوزيستون، گخين بود
فلوزيستون (خارج شَمله با هو!) + خحاكستر

 در هوا ارا تكليبى مىناميدنـن.

نالوزيستون (خارج ثـبـه با هو ا) + كالكـس

بهدست أَورد:

كا كاز كربن مونوكسيل + فلز
 فلوزَيستون از دست رفته در اثر تكليس را جايكُزين كثند:
فلز

 شيميايى بهر

 به دست مى آمد و در آن صر درت، فراوانترين

كل جهان را تشكيل مىديدهد.

\author{

1. Ether
 3. Chemical Symbol
 5. Stickstoff
}
2. Quintessence
3. Azote
4. Wolfram

 .

 اكنون
 (V - TV

 اغلب نمادها به نام انگلينى عنا

 r- ا 10

s. 1

1. Law of Definite proportions
2. Joseph Proust
3. Mixture
4. Homogeneous mixture
5. Pure Substance
6. Heterogeneus mixture
7. solution
8. phase

Le Système International d' Unitès SI . q

$$
\begin{aligned}
& \text { طلِّع زمبن در انق ماه. عكـس از سفبنئ مهنورد آبولو ها هـ هيدرورئن، فراوانترين }
\end{aligned}
$$

 كانهدايشان انست.

 , شـاخته شده است، و تعداد تركيبات آلى سنتز شـده يا استخرامج شُده از از
 عنامبر تشكيل دهندهُ آنها تفاوت تدارد.

نام واحد اصلى به دست آمده است:
$1 \mathrm{~km}=1 \ldots 0 \mathrm{~m}$
(1-i)

$$
\begin{equation*}
1 \mathrm{~cm}=0,0 \backslash \mathrm{~lm} \tag{r-1}
\end{equation*}
$$

 ST براى حجم كه متر هكعبـ

 :
 () (

$$
\begin{equation*}
1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{4} \tag{r-1}
\end{equation*}
$$

1. Sévres

و تا سه رقِم با بعنىي خْواهد بوّد.

 نيست. هقدار تعيين شده:

ماست
 ;

 برابر با

$$
r \mathrm{~cm}=0,0 r \mathrm{~m}
$$

براى مشخصى كردن هحمل مميز اضافه شلدهاند.

[^1]

- 0	shi	12, 4
$1,000,000,009,000 \times 10^{1 Y}$	T-	tera - $\quad-1$,
$1,000,000,000 \times 10^{9}$	G-	giga - - اگ\%
$1,000,00 \times 10^{9}$	M -	mega - -
$1000 x \leqslant 10^{r}$	k-	kilo - - كيبلو
$100 \times 10{ }^{1}$	h-	hecto - هكتو
$10 x$ 10	da-	deka - - 52
$0,1 \times 10^{-1}$	d-	deci - -
$0 \cdot 01 \times 10^{-r}$	c-	centi - -
$0,001 \times 10^{-r}$	m-	milli -
- $, 0000,001 \times 6.10^{-9}$	μ	micro - -
- , 0000,000,001 \times L 10^{-4}	n-	nano - -
$0,000,000,000,001 \times L 0^{-1 r}$	p-	pico - -
- $2000,000,000,000,001 \times 10^{-10}$	f-	femto - jisi
$0,000,000,000,000,000,001 \times!10^{-1 /}$	a-	atto - آتو

 SI
ضرورت دارد.

1 - 1

 مى دهند. ارقام مربرط بـ يك اندازمن

 با

$$
\begin{aligned}
& \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 和. } \\
& \text { 0. } \\
& \text { 和 }
\end{aligned}
$$

دليل اين ووش اختبارى اينز است كه بـه طـور مـيانگين، مـقادير الفزوده شده و معادير حذف شـده برابر شبوند．

 عمل جهع انـر

$$
\begin{gathered}
191,0 \mathrm{H} \\
0,9 \\
\frac{r r, 40 \mathrm{H}}{199,0 \mathrm{AHF}}
\end{gathered}
$$

 مميز دارد．

 عمل ضرب زير

$124,0 \% \times 0,{ }^{44}=r 9, * 94 *$

 اتصال به باير

$$
\begin{aligned}
& \text { (} 9,9,0 \times 10^{9} \\
& \text { (يكى رقم با باes) } \times \times 10^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } \\
& \text { 楊 } \\
& \text {. }
\end{aligned}
$$

 كتاب بده كار میرود（به ويئه براي ثبت دما ما

$$
\begin{align*}
& \text { با جنّل اينج است را به صورت زير حل محكنيم: } \tag{بادورقمبامعنى}
\end{align*}
$$

داده است.

 مى خواهيم

$$
\begin{equation*}
r \Delta \psi_{\mathrm{cm}}=1,00 \text { in } \tag{f-1}
\end{equation*}
$$

اكر دو طرف اين تساوى را بر in in 1 اتقسيم كنيم، خواهيم داثشت

$$
\begin{equation*}
\frac{r, \Delta F \mathrm{~cm}}{1,00 \mathrm{in}}=1 \tag{0-1}
\end{equation*}
$$

 كسر برابرند. مسئله هورد نظر را مى توان به صررت زير بياذ كرد:

$$
\mathrm{scm}=0, \ldots \text { in }
$$

با ضرب كردن در ضريب تبديل بـه دست آمده مى توان مسئله را حل كرد:

$$
? \mathrm{~cm}=0,0, \operatorname{in}\left(\frac{r, \Delta r \mathrm{~cm}}{1,00 \text { in }}\right)=1 r, \mathrm{Vcm}
$$

جرن ضريب تبديل برابر \mid است، اين عمل تغييرى در مقدار كميت داده

 تبديل ديگرى نيز مى تو ان از رابطله بـ دست آورد.

$$
r, \Delta F \mathrm{~cm}=1, \ldots \mathrm{in}
$$

$$
\begin{equation*}
1=\frac{1,00 \mathrm{~m}}{r, 0 \gamma \mathrm{~cm}} \tag{v-1}
\end{equation*}
$$

 تبديل سانتى متر بهابنج به كار مى دود. براي همالـ،
 زير را براى اينز آليازٌ مس - نيكل به دست آَورد:

$$
\begin{align*}
& 1.0 \rho \circ \mathrm{~g} \text { gik } \tag{11-1}\\
& 10.00 \mathrm{~g} \text { g } \tag{1T-1}\\
& \text { VO, } \circ \mathrm{g} \mathrm{~g}_{\mathrm{m}} \approx \mathrm{O}=\mathrm{O} \cdot \mathrm{~g} \mathrm{Ni} \tag{1T-1}
\end{align*}
$$

r-

 هثال ا ـ الابـب دست آين؟

ح
براى ييدا كردن هـقدار تبكل لازم، بايد عبازت
 صورت) رابهـ

بثال
نتر: استرلينگ، آليازیى شامل از ز

ح

1. Captain Nemo

جلدول 1-0 رابطة بين برخي واحدهاى انگليسى و مترى
طول
الينج

م
اكرارت (0ات آتربكا) =

جرم
ا بوند

ابتدا فرسنـگ را به متر تبديل میكتيم. اين تبديل با استفاده زاز دو ضريب حاصل از دادههاى مسئله صورت میگيرد:
 $=1,11 \times 1 .{ }^{\wedge} \mathrm{m}$

$8 \mathrm{Mm}=1,11 \times 10^{\circ}$ 任 $\left(\frac{1 \mathrm{Mm}}{10^{5} 9 \mathrm{~m}}\right)=1,11 \times 10^{\top} \mathrm{Mm}=111 \mathrm{Mm}^{*}$
 زمين تقريباً

.

 مى تواذ به دست آبردر.
 واحد جوم از ألّاز رُ را براى استخراج ضرايب

ساعت تبديل كنمب. ضريب مورد نياز ما از:

$$
g \cdot \mathrm{~min}=1 \mathrm{hr}
$$

 زير مل خراهد شلد.

 حجم به كار رفته در اينجا، يعنى سانتى متر مكيب (

 كرم در ميلمليتر (g/mL) است. روابط زير در مورد ليتر، طبنـ، تعريفـ، دقين هستند:

$$
\left\{\begin{array}{l}
1 L=1 \ldots \rho \mathrm{~cm}^{r} \\
1 L=100 \% \mathrm{~mL}
\end{array}\right.
$$

در نتيجه،

$$
\mathrm{mL}=\mathrm{cm}^{-1}(\underset{H}{ }
$$

g/mi $\mathrm{g} / \mathrm{cm}^{\top}$ "
 *ى

مثال 1

 فرض كنيد كي وزن ت-ا

[^2]
2. Eureka, Eureka

بددست آورد. جون نقره استرلينگ شامل هر هو \% جرمى نقره است،
100.0kg
= r,rץkg استرلبنـق

ساعت عبارتست از $0 . \mathrm{km} / 7$ hr صورت و مخرج اين نسبت هم ارزند:

$$
\begin{equation*}
\theta \cdot \mathrm{km} \approx \mathrm{hr} \tag{1F-1}
\end{equation*}
$$

در نتيجه، اين نسبتها را میىترانٌ به عنوان ضريب تبديل ـ به صورت
 . بـه كار گرفت - ($\mathrm{l} \mathrm{hr} / \Delta \cdot \mathrm{km}$)

 دلخواه در آيد.

F-1 F مثال
 جقدر است؟

$$
\frac{\left.\frac{9 \mathrm{~km}}{1 \mathrm{hr}}=\left(\frac{19 \mathrm{~km}}{1 \mathrm{~m}_{\mathrm{min}}}\right), ~\right)}{}
$$

توجه كنيدكه واحلدهاى موجود در مخرج اين ضريب را بايد از دقيتهه به

مثال 1-9
جرم زمين جاگالى ميانگين زمين را برحسب گرم ير سانتى مترمكعب محاسب، كنيد.
 حل میكنبه:

$$
\frac{\rho g}{1 \mathrm{~cm}^{r}}=\left(\frac{0,9 v 9 \times 10^{r \mid} \mathrm{kg}^{1,0}}{1, \Delta r \times 10^{K 1} \mathrm{~m}^{r}}\right)
$$

 برقرار كنيم. با حذن توان سوم هر دو طرف معادله، داريم.

$$
100 \mathrm{~cm}=1 \mathrm{~m}
$$

در نتيجه،

$$
\begin{gathered}
\left.10^{r} \mathrm{~cm}\right)^{r}=(1 \mathrm{~m})^{r} \\
10^{〔} \mathrm{~cm}^{r}=1 \mathrm{~m}^{r}
\end{gathered}
$$

 تبديل

$$
1 .{ }^{\circ} \mathrm{g}=1 \mathrm{~kg}
$$

(اللف) چِحالى تاج رابا استفاده از معادلئ زير به دست مى آوريم.

$$
\begin{align*}
\sqrt{N E_{\pi}} & =\frac{\rho \pi}{\Gamma+\infty} \tag{10-1}\\
& =\frac{1 r r 0,0 \mathrm{~g}}{1 r 4, \cdot \mathrm{~cm}^{r}} \\
& =10,99 \mathrm{~g} \mathrm{~cm}^{r}
\end{align*}
$$

 شـده بود.
 بهدست آوريد. اكر مقدار مورد نظر يكى نسبت باشدل:

 (براى مثال، زمان / ناصله) و قابل استخراج از دادهـهـاى مسـئله را بنويسيد.

 حذذ خوراهند شد.
 رابا واحدهاى خواستهشده به دست وَرْريد.

روش ضريب تبديل در حل مستمُله
اكگر مقدار مورد نظر يكى نسبت نباشلد:

مسئله داده شده و حل مسئله بر آن استوار است است را بنويسيد.
r - r
 داده شده در مسينله يا الز تعريف يكى واحد به دست آوردي

 صررت ضريب تبديل بيان خو اهل شد.
\&

 همان واحد مورد نظر باشـد.

حجم ماه جقلـر است؟

$$
9 \mathrm{~cm}^{+}=v, r 0 \cdot \times 10^{r \theta_{\mathrm{g}}}\left(\frac{1 \mathrm{~cm}^{r}}{r, \mu+1 \mathrm{~g}}\right)=r, r \ldots \times 10^{r \Delta} \mathrm{~cm}^{r *}
$$

 به كار ميرو2 2 دستگاه بين المللى واحدها (به مصورت

 را مـىتوان با استغلاده أز خرايب نبديل انحجام داد.
 مشنخص با بكد بيكر تركيب شـدهاندا
 Matter

 مهحلوط (بخش Mixture

Phase

. با كار مسرو2 (Le système International d' Unitès) ارتام بامعنى (Significant figures

 Solution يكنواخت (ممشگ) بائشد.

$$
\begin{aligned}
\frac{\rho_{\mathrm{g}}}{1 \mathrm{~cm}^{r}} & =\left(\frac{0,9 v \xi \times 10^{r \varphi} \mathrm{~kg}}{1,0 \wedge \lambda^{r} \times 10^{r 1} \mathrm{~m}^{r}}\right)\left(\frac{10^{r} \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(\frac{10^{-9} \mathrm{~m}^{r}}{1 \mathrm{~cm}^{\mu}}\right) \\
& =\left(\frac{0, \Delta 1 \mathrm{gg}}{1 \mathrm{~cm}^{r}}\right)=0, \Delta 1 \wedge \mathrm{~g} / \mathrm{cm}^{r}
\end{aligned}
$$

 (1 , $0 \cdot \mathrm{~g} / \mathrm{cm}^{\varphi}$

$$
\text { ا } 1 \text { است مقا يسه كنيد.) }
$$

چچالى متوسط ماه

R-I مثال

或

Weight جسم وارد ميتّتود．

Substance خراص لـ تركيب ثابتاتنـ．

$$
\therefore 0,000.9 \mathrm{~mm}(j) 59 r_{0,000,000 \mathrm{~kg}}^{(\rho)}
$$

 $1, V \times 10^{-\pi r} g(j): 0,00090 \mathrm{Mg}(\jmath): r g, 000 \mathrm{pm}(0)$ （ IV＿ 1

 S裉 و （19＝1

 PGunt

己位 ．

 تن تنا هتر هكمب است ～ أست．（الفی）
 J－
 J
هث:

行

 بر

 ， ¢

．

 ，تم

 （
$\mathrm{Pb}(3): \mathrm{Li}(A): \mathrm{Mn}(3): \mathrm{Mg}(\rightarrow): \mathrm{Cr}(-): \mathrm{Cl}(\mathrm{el})$
：
 ：

 ：N
 fices adi ：

：

 ，I I

：$\left(9,0 r \times 10^{-r}\right)-\left(r, 09 \times 10^{-r}\right)(0) \cdot\left(1, r \Delta \times 10^{5}\right)+\left(1, r \vee r \times 10^{0}\right)\left(-\omega^{-}\right)$ $:\left(0,0 \times 10^{-9}\right)^{r}(0) \div\left(1, \Delta 0 r \times 1 e^{-T}\right) /\left(1,5 \times 10^{r}\right)(\tau)$ $\left(v, f \mid r \times 10^{s}\right)\left(1,0 \cdot T r \times 10^{-r}\right)(\rightarrow)$

 $\left(1,90 \times 10^{5}\right)+\left(5 \mathrm{NT} \times 10^{\mathrm{V}}\right)(2)$
 \ldots ．．．
 U

 jو，01， 96 ．

 ساعت و متر بر ثانيد جقلدر است

 بح

 كرافيث حه محميى را الشعال مىكند؟

层 1
行

 كه ير باشـد هیفدر است؟ ـ 1 loookg （ c g／mL
尾 $\mathrm{g} / \mathrm{cm}^{\top}$

 و

 ．الست $1,0 \mathrm{~g} / \mathrm{cm}^{*}$
社

 است

共
 أكَإِى （ 1 ا ا ا 1

 تهبة

 ＿ 1

 190 ا 190 － 1

 Y0，\％Yo－ 1
 （ب）هتر به كانيه هِقدر انـت

 ا 1

 ＿ا

 نقطهاي بر روى خط استوا در حول محور زمين را بر حسبب منر در ثانبه د مبل

مقدمهاى بر نظريهُ اتمى

يك نوع اتم با جرم ميانگين در نظر مر مرفت.
 شيميايـي استخراج كرد:

 كُروْبنـى اتمها، ثابات است

 موجود در آنَ جسم ثابت است است

2. Principia
3. Opriks
4. John Dalton

 YV (شنيمى هستهاى)، الين مبحث را گسترش خو اهيم داد.

 عنصر است. نوع اتمهاي مرجود در يكى تركيب و نسبت آنيا هـميشه

نتيجه رساند كا اين برتوها جرياني از ذرات سريع السير دارايى بار منفى

 كار رفته به هنو ان كاتاتد، يكساناناند.

 ثأنع

 افزايش q انزايش مى يابد.

 الكترون در يكا صنحه قرالر میكيرندنـد

 مقدار

$$
q / m=-1.7588 \times 10^{8} \mathrm{C} / \mathrm{g}
$$

كولن

بار الكترون نخـتين اندازْ

2. Humphry Davy
3. George J. Stoney
2. Michael Faraday
5. Joseph J. Thomson
4. Julius Plücker
7. Robert A. Millikan

جالن دالتون (VF\& - 1NFF)

جرم ثابتى از كربن داراي نسبت ب بـه ا الست. بـروسى تـجربى قـانون

> T-Y T T التترون

شـده:بود.

 الكتريكى استـ.

 ع. ع. استرنى

$$
q=-e=-1.6022 \times 10^{-19} \mathrm{C}
$$

 .3)

$$
m=\frac{q}{q / m}=\frac{-1.6022 \times 10^{-19} \mathrm{C}}{-1.7588 \times 10^{8} \mathrm{C} / \mathrm{g}}=9.1096 \times 10^{-28} \mathrm{~g}
$$

- +

 شـو2، يك بون

عكس (يعنى به سوى الكترود مشبث) میروند.

 . ميدان الكتريكي.

 يكى قطره با اندازم كيرى سرعت سقر ط آن معين مى ششود.

توضيح داد.
的 هستَ اتم

راديواكتيويتهُ طبيعى

مشُخص میشوند.

1 ـ تابش آلفا مركب از ذراتى است كه هر يكى بار با بـو بو جرمي در

1. Ernest Rutherford
2. James Chadwick
3. Henri Becqurel

تامسون (1909) مطالعه شلد. مقادير m/m بـا استفاده الز هـمانْ روش
 هنگام استفاده از

 خو/هد داشت.

$$
q / m=+9.5791 \times 10^{4} \mathrm{C} / \mathrm{g}
$$

 با بار الكترون اما با علامت مسالف است است

$$
q=+e=+1.6022 \times 10^{-19} \mathrm{C}
$$

$$
m==\frac{q}{q / m}=\frac{+1,8, Y Y \times 10^{-19} \mathrm{C}}{+9,0 \vee q) \times 10^{4} \mathrm{C} / \mathrm{g}}=1,5 \mathrm{VrF} \times 10^{-r r}
$$

آ r

ارنست رادرنور2 (|AV| - | \mid (

范

 حو
أـمار بروتونها

 ，r

$$
\begin{align*}
& A=\text { = } \tag{r-r}
\end{align*}
$$

Lه

 بالاى سمت حیب آنَ قراز داده میشود （1）

بار يك جزء	تركيب اجزاء	دli	برت
Y＋		α	｜iT
－	الكتزون	β	¢
－		γ	45

促多 در berer

$$
\text { تقريبي } 1 \text { (تقر يباً Fر ه مسرعت نور) سير مى كنتن. }
$$

> الگُوى اتمى رادرفورد

 آلفا به ورقئ بسيار بازكى（با ضهامت تقريبى

 (الف)

$$
\begin{equation*}
\text { 准 = }=Z \text { بار بروتو } \tag{1-r}
\end{equation*}
$$

$$
=I K
$$

$$
\begin{equation*}
=r v-1 r=1 \% \tag{r-Y}
\end{equation*}
$$

 ه ا الكترون است. تو جه داشته باشيد كه:

در نتيجه،

$$
\text { تعداد الكترونمما = }=1 T-r=1 \text {. }
$$

 بيرون هسته است
.

$$
\begin{equation*}
=19 \tag{1-r}
\end{equation*}
$$

W0 نا

$$
=r r-14=15
$$

 الكترونها را نيز بهد دست آورد:

$$
\begin{aligned}
& \text { بار بيرن - نعداد برونونها } \\
& =19-(Y-)=19+Y=1 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (V Y) }
\end{aligned}
$$

$$
\begin{align*}
& \text { باركل الكترونها + بإركل يروتونها = بار يون } \tag{0-Y}
\end{align*}
$$

$$
\begin{aligned}
& \text { (} \quad \text { - r) } \\
& \text { تو جه كنيد كـ شهار بروتونها برابر با عدد اتمي Z اسـت. }
\end{aligned}
$$

A
g (Z) (Z نماد
 ITr Na حير/مون هسته است.

1- بشال در اتم

ح عدد أتمى (Z=Y) (Z نشاندهندة: (Cu ع

$$
\begin{equation*}
\text { = نعلداد نوترونها }=A-Z \tag{r-r}
\end{equation*}
$$

$$
=q r-Y q=r Y
$$

 Qه الكترون نيز در بيرون هـسته و جود دارند.

ror ror

 .را بنو يسيد.

هروتوذها و تعلداد نوترونهاستا:

$$
\begin{aligned}
& A=\text { تعداد نوترونها + تعداد بروتونها } \\
& =1 q+r Y=Y 1 \\
& \text { به اين توتيب نماد عتصر تتاسـيم K K }
\end{aligned}
$$

 . بالإي سسهت راسـت تماد يون میا آورند.
معادلمهاى زير در تفسير بار يك يون يكى اتمى اهمميت دارند:
بار منغى كال + بار مثبت كل = بار بون

 ,

 اتهـ

 تناوبى به ثرار زير است:

 (Z=1،H) ا جالو

 (S شا شامل

 Aا الكترون در خخارج از آن الست.

H. r re

 در خارج از هسته باشد را بنو يسيلد.

$$
\begin{aligned}
Z & =\text { تعلاد بروتونها } \\
& =9
\end{aligned}
$$

$A=$ = تعداد نوترونها +

$$
\begin{equation*}
=9+10=14 \tag{Y-r}
\end{equation*}
$$

باركل الكترونها + باركل برونونها = بار بين
به اين ترتيب، نماد اين يون
(ب)

$$
\begin{aligned}
Z & =\text { تعداد بروتونها } \\
& =\text { rf }
\end{aligned}
$$

$$
\begin{align*}
A & =\text { تعداد نوترونا } \tag{r-Y}\\
& =Y \hat{U}+r_{0}=\Delta g
\end{align*}
$$

تعداد چِروتونهاى اين يونه، نتيجه بار آن، +r اسيت. با،

$$
\begin{align*}
& \text { باركل الكترونها + باركل } \tag{0-Y}\\
& =(Y Y+)+(Y Y-)=Y+
\end{align*}
$$

نهاد ايز بون

	^1 نوتردن	V
-	O	

" ${ }^{\text {POCICI }}$

 فلوئور). ولى اغلب عناصر داراى بيش از يك ايزوتوت هستند (تلى، ها 1 ايزوتوت

 باردار، ضمن كذشتن از ميدان مغناطيسى، از مسيبر مستقيم خور منخرف

 جرم آن، يعني

1. Mass spectrometer
(Z $=0 V$ ILa)

 استاتين (At) هستنـد.

- Y

خواصى شيميايیى فلزات با خور اص شيميايمى نافلزات تغاوت دارد.)
 جلول تناوبى نها يشكر موز تقريمى بين فلزات و نافلزات است. نافلزات

W-

هر مقياس جرم اتمى نسبى بايل مبتنى بر گماردن اختيارى مند ارى

 امروزه بهك كار میرودد، اتم دارم) به صورت بكى دوازدهم جرم اتم

هستهاست. اينشتين، هم ارزى ماده و انرثى رانشان داد اد. اين تفاوت ت جرم برحسب

 (rq) 999 и ~

نسبت است وزن اتمى عنصر كلر، ميانگين وزنى جرم اتمى ايزو تو بشهاي طبيعى
 را به دست آورد. مقدار به دست آمده به ائ اين روش، در در صورتى درست

 عبارتست از هم ارز اعشارى اين درصدهاي فراونانى:

> (جر) (زراونانى)

ra, $\% \Delta \psi_{u}$

 اكسيزر بيشنهادهر كر. 2. Binding energy

> G० نماد دو ايزوترب نقره (Z نوترون و ديخرى ابونوترون دارده.

ح
هر دو ايزو توب
 میتوان به دست آورد:

$$
\begin{aligned}
& \text { تعداد نوترونها + تعداد يروتونونها } \\
& =F V+9_{0}=1 \cdot \mathrm{~V} \\
& =\varphi r+9 r=1.9
\end{aligned}
$$

در نتيجه نماد ايزونوتبياها،

 آٓب، شاملـ

 برأبر 1 میشترد.

$\mathrm{ir}^{\mathrm{Mi}} \mathrm{Mg}$	$(0, V \wedge 99)(Y Y, 99 u)=1 \wedge, 90 \mathrm{u}$
${ }_{17}^{{ }_{10} \mathrm{Mg}}$	$(0,1000)(r r, 94 u)=r, 0 . u$
${ }_{r} \mathrm{Mg}$	$(0,1) 01)(r 0,9 \wedge u)=r, \lambda s u$

rF, TIU

V-r r

كربن طبيعى، سخلوطى از ولr

معادلة تعيين وزن اتمىى كربن به صورت زير است:
${ }^{14}{ }_{8}^{1 T} \mathrm{C}$
اكر فراوانى خوراهل بود. در نتيجه،
$(x) \mid r, 000)+(1-x)\left(\mid r_{j} 00 r\right)=|r, 0| \mid$
$1 r, 000 x+1 r, 00 r^{r}-1 r, 00 r x=1 r, 011$

$$
\begin{aligned}
-1,0.5 x & =-0,99 r \\
x & =0,9 \wedge 9
\end{aligned}
$$

اتمهاى

 صرفـنظر كرد.

(يونهاكي مشَبت) اسـت.

 (6رقَ

مقذأر يذيرفته شلده براى كلر،

 مثال، تعدلاد اتمهالى مو جود در يكى قطر0: جهان است.
 هستند. وزن اتمى چجنين عناصرى، يكى مقلار ميانگين است كه بيانگر ججرم تمام اتمها و فراواتى طبيعى آنهاست.

 اوزان اتمىى، در يكى بجلول الفبايى عناصر در داخل جلم جلد كتاب نمايش داده شـده الست.

 استـ.

اتم C

 Law of multiple proportions

 برثرار است.
Mass number, A الضاقه Wass spectrometer

 Metal

 Metalloid, semimetal

 Foble gases

 (Rn)

 Nucleon بافت میشَوند.

 Period
جـول تناوبى قرار دارند.

Periodic law
عناصر، تابع تناوبى آنهاست

 Radioactivity

 Dا وا

 (($Z=\wedge 9$ (Y) Alkall metals

 د 2层 1) Atom
 Laار Atomic mass unit, u . Atomic number Z
 نتّ برابر است Atomic weight عنصر نسبـت به جرم بك امه آم Beta particle , β
راديو اكتيو معينز.

Binding energy
 بين هجهوع جر

بسسيار بإيبن.

Electron
 قرار 2ارد. تابش گامام، Gamma radiation, γ
 S Sronp, family
بك ستون عمودى در جـول تناربـى ترار داريند.

 Iom

 الكترون) باشد.
I Isotopes

 (V - Y) Lanthanoids, lanthanoids

 Law of conservation of mass

S

 IV _ Y

:

 $r,{ }_{\rho}, \mathrm{Se}^{\uparrow-}$
 P, ${ }_{\text {ghan }} \mathrm{F}^{-}$

جدول تناوبى

 (ا Y - Y

$\mathrm{Br}(\rho): \mathrm{Bi}(\tau): \mathrm{Ba}(ب)!\mathrm{B}(\boldsymbol{\mathrm { C }})$
ايزوتوپ، وزن اتمى اتم

 رنبه

俍 الست در بيبست آلخر كتاب آمده است الست.

نظريهُ دالتون، قوانين تركيب شيميايى
 جـ...
 S . تركيب

 (Y Y

ذرات بنيادى

 رو A - Y
 بهدست دهـب؟

 .

仿 $\times 10^{-14} \mathrm{C}$

(1 ـ r r

 ر با ار أست؟ (1) (Y _ Y Y Y
 . $V=\pi / r \pi r^{r}$

 شيمبايـي ششابه Cu باشندئ (ب) Y Y Y (ب) هس مو مو بون توليد میكتد: الكترون دارنده
.
 C. .

 , Y^ - Y دi .
درصد ثراوانى هر بك أز اين دو ايزونوب جـقدر است

مسائل طبقهبتدىنشـد
q/m إ q/m شرونون (

استوكيومترى، بخش I : فرمول هاى شيميايى

متصل شدوانت. دز فرابندهاىي فيزيكى و شـيميا بيى، مر لكولنها بهصورت

 داده شده است

1. Afred North Whitehead
2. Stoichiomerry
3. Stoicheion
4. Metron

 اتمى مادْ، مبناى اين مطالعه را تشكيل ميدهد.

 e

مولكولهها

O_{+}		CO $\mathrm{O}_{\text {+ }}$
$\mathrm{H}_{\mathrm{r}} \mathrm{O}$.0	NH\% Tr	CH_{4}

$\mathrm{NH}_{\mathrm{T}} \times \mathrm{C}$
CH_{e},

道 سولفات،

 دز بلور سديم كلرين، به ازاي هر يون

توليذ اين بلور است.

 يورنها در بلوز بلو رهاى

$$
\begin{aligned}
& \text { مثال سـا - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { و (ج) يون }
\end{aligned}
$$

باششد. فرمول Na ا اسيت.

أت CaO ,

 (9-

جلول

 نتُان داده شده است.

يونها

 اخ F^{-}, $\mathrm{Fe}^{\text {Y+ }}$ ، $\mathrm{S}^{\text {r- }}$ ، $\mathrm{All}^{\text {rt }}$

r-r

 , . $\mathrm{C}_{\varphi} \mathrm{H}_{\wedge}$ ،

$>$

 (الف) براى (CY

فرمول تجربي، "CH است

بخش يذيرند. فرمول تجريبى،

 . ${ }^{\text {Cr }}$
 تحربى،

فرمول يك تركيب يوني (مـانتد

از

 كاهشي داد.

و

ساير فرمها

 مولكول بسيار بزرگ به حساب آَورد. تركيبات ديگرى نيز (براي مثال،

اتمهاي موجود در جسم الست.
"

 فرمول تجربيى آن HO

اطالاعات بيشترى نباز داريمر. براى بعضى تركيبات موى لكولى، فرمول مولكولى و فرمول تحربى يكسـاناند، براى مثالا:

$\begin{array}{llll}\mathrm{H}_{2} \mathrm{O} & \mathrm{H}_{2} \mathrm{SO}_{4} & \mathrm{CO}_{2} & \mathrm{NH}_{3}\end{array}$

$\mathrm{N}_{2} \mathrm{H}_{4} \quad \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6} \quad \mathrm{C}_{6} \mathrm{H}_{6}$
به فرمولهماى تجربى زير مريوط است.

$\mathrm{NH}_{2} \quad \mathrm{BNH}_{2} \quad \mathrm{CH}$

شـدهانست:

$9,0 r r o \Delta \times 10^{r r}$

مفـلاري از جـسم كـ تعداد واحدهاى بنيادى آن برأبر با عدد آَوركادرو

 تعريف مى شود كه تعداد اجزاءى بتيادى آن برابر با تعدلاد اتمهالى موجود .

 بريلـم
$8,01 \mathrm{H} / \mathrm{Mg} \mathrm{Be}=1 \mathrm{moll} \mathrm{Be}=9,0 \mathrm{rr} \cdot 0 \times 10^{\text {rT }} \mathrm{Be} \mathrm{F}$

 ?

$$
1 \mathrm{~N}_{j} \cdot \mathrm{rg} \mathrm{H}_{Y} \mathrm{O}=1 \text { mol H} \mathrm{H} \mathrm{O}=9,0 \mathrm{YY} \times 10{ }^{T r} \mathrm{H}_{Y} \mathrm{O} \mathrm{O}
$$

 2. Avogadro's number

国 35 . BaCl_{4}居

> =

r-r rer rer

j

$$
\begin{aligned}
& r(A 1 \text { Al } \\
& r(S \text { S تات }
\end{aligned}
$$

 जि Al :
رابه صروت انـبر بـان هـكتّم:
$\uparrow \mathrm{mol} \mathrm{Al}=\uparrow \operatorname{rog} \mathrm{Al}$

 $1 \mathrm{~mol} \mathrm{Al}=\mathrm{r}, \mathrm{g}, \mathrm{gal}$
 اين واحـد بايل حذف شوبد:
$\varsigma \mathrm{mal} \mathrm{Al}=\left\lvert\, \operatorname{rag~Al}\left(\frac{Y \mathrm{~mol} \mathrm{Al}}{Y \mathrm{~V}, \circ \mathrm{~g} \mathrm{Al}}\right)=r\right., f r \mathrm{~mol} \mathrm{Al}$

مثال
 \downarrow پاستخ مسئله بايد با جهار رقم بامعنى بيان شود. مسئله را بـه صورت زير بيان مىكنـه:

$$
? \mathrm{gH}_{r} \mathrm{SO}_{\mathrm{f}}=0, \mathrm{r} 0.0 \mathrm{~mol} \mathrm{H} \mathrm{H}_{Y} \mathrm{SO}_{f}
$$

وزن فرمولى

$$
1 \mathrm{molH}_{Y} \mathrm{SO}_{\psi}=4 \lambda, \cdot \wedge \mathrm{~g} \mathrm{H}_{Y} \mathrm{SO}_{\psi}
$$

واح بـا با د

J

 قيراط كه تهار رقم باممعنى دارد، محدود مى ششود. بـا اين ترتيب، هسئله به صورت زير در مىآيد:

ضريب تبديلى را بر مبناى وزن اتمى C (با جهار رقم بامعنى) بددست **

مشتخص شود. يكـ مول از اتمهاي H شامل

1 mol $\mathrm{F}=9,0 \cdot \mathrm{r} \times 10^{\text {TT }} \mathrm{F}$ م

 BaCl

 شامل هعادير زير است.

 كه در جمع آنها، میشود

اوزان اتمى به كار رفته در حل يكي مسثّله را بايد با ارقام با مـنىى

 بايد نشان دهندة اين دقت باشـدر.
 مى توان به سه شيوه بيان كرد.

 سـيم در واحد جرم اتمي است: r-

سـديم است: rrs9^9vvgmol

ح

ree n-r مثال

 نيكر تين را بهدست آوريد.
J
 هر يكى از عناصر را در
 إرسيلـ،
$S_{B C}=\varphi_{\gamma} \mathrm{VAg} \mathrm{CO}_{Y}$

$$
1 \mathrm{Yg} \mathrm{C}=44 \rho \circ \mathrm{~g} \mathrm{CO}{ }_{Y}
$$

 وجود دارد، در نتيجه:

 .
مقدار ثر يكا عناصر در تمونه نيكوتين بـكار مكيريم:

$1 \mathrm{molC}=1 \mathrm{r}, \mathrm{ol} \mathrm{g} \mathrm{C}$
كه با دأشتن واحد C و و م مخرج باعث حذذ اين واحد شود: $\rho \mathrm{CC}$

 تبديلى از فرمول زير به دست مى آوربي:

$$
1 \mathrm{~mol} \mathrm{C}=8, \mathrm{ort} \times 1 .{ }^{\text {Tr }} \mathrm{C}
$$

با قرار دانشتن واحد ضر بكردن در اين ضريب، حل مسئله كامل مى شورد:

د

v-r

درصـل Fe در حك

$$
\begin{aligned}
& r \mathrm{~mol} \mathrm{Fe}=r(00, \Lambda) \mathrm{g} \mathrm{Fe}=111,9 \mathrm{~g} \mathrm{Fe} \\
& r_{\mathrm{mol} \mathrm{O}}^{\mathrm{m}}=r(19,0) \mathrm{gO}=\frac{r \lambda, 0 \mathrm{gO}}{109,9 \mathrm{~g}}
\end{aligned}
$$

Fe مجمبع جرمها، يعنى

$$
\frac{111,9 g \mathrm{Fe}}{109,9 \mathrm{Fe} \mathrm{Fe}_{r}} \times \% 1,00=1,99,9 \mathrm{FFe} \quad \mathrm{Fe}_{Y} \mathrm{O}_{Y} \mu
$$

مثال 10 -

فرمون تجربى تركيبى شامل P \& P

مبناى درصد اجزاى أين نمورنـ شامل فـل

$$
\text { تا سه رقم بامعنى، به ترتيب؛ 0, آبّ } 9 \text { ا المت: }
$$

$\oint \mathrm{mol} O=09, \mathrm{tg} O\left(\frac{1 \mathrm{~mol} \mathrm{O}}{19, \mathrm{gO}}\right)=r, 0 \mathrm{mmolo}$

$$
\frac{r j, r}{1, j 1}=r, 00 \quad 0 \quad \frac{1, r \mid}{1, * 1}=1,00 \quad P \quad P \quad s_{r}, r
$$

11-r

تجربى كافئين را به دست آوريد.

J

 نسبت جرمى را مىتوان به نسبت مولى.تّبيل كرد و به اين صـروت،

$\S \mathrm{mol} \mathrm{C}=0, g \mathrm{HKg}_{\mathrm{K}} \mathrm{C}\left(\frac{1 \mathrm{~mol} \mathrm{C}}{1 r, 0 \mathrm{CC}}\right)=0,0 \Delta \mathrm{r}_{\mathrm{mol} \mathrm{C}}$
$\varrho \mathrm{molH}=0,090 \mathrm{gH}\left(\frac{1 \mathrm{~mol} \mathrm{H}}{1,0 \mathrm{gH}}\right)=0,090 \mathrm{~mol} \mathrm{H}$
$f \operatorname{mol} N=0, \mu g 4 g N\left(\frac{\mid \operatorname{mol} N}{14, \circ g N}\right)=0,0 ヶ 40 \operatorname{mol} N$
$巳 \mathrm{molO} O=., \mathrm{T} \cdot \mathrm{AgO}\left(\frac{1 \mathrm{molO} \mathrm{O}}{15, \operatorname{cgO}}\right)=0,01 \mathrm{romol} \mathrm{O}$
4.r.

بسنـه را مىتوانذ به صورت زير بيانكرد:
 Ag\% S بومى آيد): امّا عد اند

$$
V_{0}, 000 \mathrm{Ag}_{\mathrm{y}} 5 \approx \operatorname{loog} \approx \mathrm{~s}
$$

و ضريب (كاند

 Ag Ag

$$
\begin{aligned}
\mathrm{rmol} \mathrm{Ag}_{\mathrm{g}} & \approx 1 \text { mol } \mathrm{Ag}_{\gamma} \mathrm{S} \\
\mathrm{r}(1, \mathrm{~V}, 9) \mathrm{g} \mathrm{Ag} & =r+V, 4 g \mathrm{Ag}_{\gamma} \mathrm{S} \\
\mathrm{r} 10, \mathrm{Ag} \mathrm{Ag} & \approx Y 4 V, 4 \mathrm{~g} \mathrm{Ag}_{\gamma} \mathrm{S}
\end{aligned}
$$

بنابراين،

ا

R

 است. فرهول مو لكو لى كافئين وا بهدست آوريدي

وزن فرْ فرلى بوابر الين مقدالر مى.

14-r

俍 هو لكو لمى كلوكز را به دست آَوريد.

 ضريب (گُلوكز (

 $\bigcirc \mathrm{molC}=V r, \operatorname{lgC}\left(\frac{1 \mathrm{molC}}{1 r, \circ \mathrm{gC}}\right)=9,0 \mathrm{~mol} \mathrm{C}$
 $\uparrow \operatorname{mol} O=9,9,0 \mathrm{gO}\left(\frac{1 \mathrm{molO} O}{19,0 \mathrm{gO}}\right)=9,0 \mathrm{~mol} \mathrm{C}$

 مو انكو, لمى كلوك

 نسبت زبر را به دست خر اهـل داد
$\mathrm{Fmol} \mathrm{C}_{\mathrm{m}}: 0 \mathrm{~mol} H: Y \mathrm{~mol} N=1 \mathrm{~mol} 0$

范

 .
K

 هـى توان الز فرمول تجوربى به دست آورد.
rer rer rer

 باشـلـ، بيلدا كنيد.

$$
\frac{r \Lambda F}{1 H Y}=r
$$

 كه وزن مولكولى تركبب هعلوم باشدلد.

جكيدهٔ مطالب
استوكيومترى يك تركيب ثيمبابيى بر فرمول شيمبابيى آلن نركيب استو ار استات.

 بلور تركيب مى توان نونئست.

مفاهيمر كليالى
عدد آوروكّادرد.
Molecular formula

 Molecular weight وزذ مولكولى (بخئ 「 انمهاى تشكيل دهنـدُ يكى بولكونا Molecule
 Monoatomic ion كا اتمr.
 حند اتمه

 Structural formula

 داده مـتشود.
 . $\mathrm{Fe}^{\mathrm{r}+}$, III با
 Cr ${ }^{\text {r+ }}$, (III)
"T ـ ـ ${ }^{\text {ـ }}$

 نعيبين كـنـيد: . $\mathrm{P}_{\mathrm{T}} \mathrm{N}_{\mathrm{T}} \mathrm{Cl}_{\bar{\gamma}}(\omega)$ مول، عدد آووكّادرو

كناب آمده: استا

Anion

Cation Chemical formula
 در يكا تركيبـ Diatomic molecule اتم تشكيل شـله بائسد.

 Formula weight اتمهاى مرجرد در يكى ثرمولا

 Mole

فرمولّها، مولكولها و يونها

 الت $\cdot \mathrm{Ba}(\mathrm{OH})_{\gamma}(\Omega): \mathrm{CuSO}_{\psi}(\tau): \mathrm{CrCl}_{\Gamma}(ب)!\mathrm{Na}_{\Gamma} \mathrm{O}$ (الض) (رr r

$$
\mathrm{KOH}(\Omega): \mathrm{Na}_{\Gamma} \mathrm{CO}_{r}(\tau): \mathrm{Ca}^{(}\left(\mathrm{PO}_{\mu}\right)_{\Gamma}(ب): \mathrm{ZnCl}_{\Gamma}(\mathrm{dl})
$$

 PO ${ }_{7}^{+-}$- (3
 نظرى＇لاز است؟ （لr لازم است؟

 （ $\mathrm{H}_{r} \mathrm{O}$ rjofg， $\mathrm{CO}_{r} 19,4 q_{g}$ جثلن است؟

 جقلر انست؟

 $\uparrow=\mathrm{Fe}_{\mu} \mathrm{O}_{\mu}$度
 سرلفات به صورت

تعيين فرمول

 $.1 \mathrm{~T}_{0}, 10, \mathrm{C}_{\mathrm{r}} \mathrm{NH}_{T}(\infty): 49,01 \cdot \mathrm{NO}_{r}(0): \mathrm{V}_{0}, 10, \mathrm{CH}_{\mathrm{T}}(r)$ نز ． $\mathrm{PN}_{\Gamma} \mathrm{H}_{4}(\mathrm{C})!11 \wedge$ ） 99 ， sOCl_{T}（
 ن

俍 ج花

压 وانبلبن چبـرت

 EDTA
怲 ，\quad w， $5,5 \% / 1 V, 0$ ．
（

$$
\mathrm{CCl}_{\varphi}(\mathrm{r}): \mathrm{HCl}(ب): \mathrm{Cl}_{Y}(\mathrm{e})
$$

F
 وجود
（ا 10 ـ جرم（ 10 ـر

（الف ا
 S اV ـ F
 （ اA ـ r

 ايزوتوب Y ا Y ，Pt Pt ل

 و

الزاى هر اتم Cu

 تعيين كنيد．

 M

تركيب درصد تركيبات التر TV－Y
 （الم

$$
\text { . } \mathrm{NH}_{r} \mathrm{NO}_{\mu}(\rho): \mathrm{NO}_{\gamma}(\zeta): \mathrm{NH}_{r}(ب): \mathrm{NaNO}_{r}(ا)
$$

（آ

 ． با صورت نظرى جثـثر است

$$
\begin{aligned}
& \text { " }
\end{aligned}
$$

KCN
, 90 - r
و ومامل
(9 -
S.
GV_r
تبديل شود، جه متلار
ت 94 ـ 9 نرمول تجربى تركيبى

> (ا four
> مولك

،
原 هي

 4,9AYg وr

 شو r

 مج
" خأرج تُــــه
机

میى آب. فرمرل تجربي كروم كلريد جبـت؟؟ (90 ـ

استوكيومترى، بخش II : II معادله هاى شيميا يى

هـــن نـيــت ك، در آزمايشُگاه رخ مى دهـ.

 دی سرلفور دیكلريله، معادلة، مينويسيم،

$$
\mathrm{CS}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CCl}_{4}+\mathrm{S}_{2} \mathrm{Cl}_{2}
$$

 كرد. حالتهاي مهـم عبارتند از:

برای (g)
(1) براي مايع
(s)
(aq) براى محلور أبى
براى مثالل:

$$
\mathrm{CS}_{2}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CCl}_{4}(\mathrm{l})+\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})
$$

 در مورلكول لCCl

1. Reactants
2. Products
3. Balanced
4. Generalizations

 شيميايیى آن واكتنَ به دست مى آْوريم. تفسير استوكيو مترى يكـ معادلألّ شيّيميا يـي بـرمول استوار است.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

 هيدروزن، آب،

 استنباط میشود.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

مبرلكول Cl

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CCl}_{4}(\mathrm{I})+\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})
$$

 هى كيرد، نه با تغيير خود فرمولها.

1-1 F F F

با عبور داوز بخال آب، ($H_{r}(g)$ مو ازنه شدهُ اين واكنشن را بنو يسيل.

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

隹

 فر $\mathrm{Fe}_{\mu} \mathrm{O}_{\psi}$ تغيير فرمول فراوردمهاياى واكنش انجام

 : فراهم ساز

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

أكنون معادله هـا موازنه شلده اسـت، بجز براي هيلنورزن كه به صـورت زير موازنه مىشوده:

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

سوخت در موجاورت اكسيرُن
در فُصل r

 كربن باششد - $\mathrm{CO}_{T}(\mathrm{~g})$ توليد ميشود

 ? $\mathrm{mol} \mathrm{O}_{2}=5.00 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}\left(\frac{7 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}}\right)=17.5 \mathrm{~mol} \mathrm{O}_{2}$

 كلر رالز واككنثى زير مى توان به دست آَردد:
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$
(الف) براى واكنشَ با

(الف) حل مسئله رابا نوشتن معادله زير آغاز میكنمب:

$$
? \mathrm{~g} \mathrm{HCl}=25.0 \mathrm{~g} \mathrm{MnO}_{2}
$$

نــبت استوكير مترى استخراج شده لز معادلهُ شيميايمى را بر حسب مولم
 فرمولى
$? \mathrm{~g} \mathrm{HCl}=25.0 \mathrm{~g} \mathrm{MnO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{MnO}_{2}}{86.9 \mathrm{~g} \mathrm{MnO}_{2}}\right)$

$$
1 \mathrm{~mol} \mathrm{MnO}_{2} \approx 4 \mathrm{~mol} \mathrm{HCl}
$$

كه از آن، ضريب تبدل (? $\mathrm{g} \mathrm{HCl}=25.0 \mathrm{~g} \mathrm{MnO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{MnO}_{2}}{86.9 \mathrm{~g} \mathrm{MnO}_{2}}\right)\left(\frac{4 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{MnO}_{2}}\right)$

 معادله زير راد ر نظر بيخيريد:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

 براي توليد آب است در سطح اتمى - مولكولي، به ما ما مىكويد:
 آووكادرو (9)

$$
2 \mathrm{~mol} \mathrm{H}_{2}+1 \mathrm{~mol} \mathrm{O}_{2} \longrightarrow 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

 .

همين طر: خحرن معادلى نشان ميدهد كه،

r- بش
. معادلة واكنش به صورت زير است:
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

تعلاد مرل هاي

$$
? \mathrm{~mol}_{2}=5.00 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}
$$

رابطه استوكيومترى بهدستآمده ازضرايب معادلأشيميايمى عبارتستاز:"

$$
2 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \approx 7 \mathrm{~mol} \mathrm{O}_{2}
$$

از اين رابطث مىتوان ضريب تبديل مورد نياز برايى حـل مـعادله را بــ

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

 و

 و تـعيين كـنّده: مـفلار

 مسئله بايل واكتشردهندةً محدود ساز ر هششخص كنسب.
مثال F - F

 زير است:

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

 تشان ميدهد: $3 \mathrm{~mol} \mathrm{Fe} \approx 4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

$$
\frac{4.00 \mathrm{~mol} \mathrm{Fe}}{3 \mathrm{~mol} \mathrm{Fe}}=1.33
$$

$$
\frac{5.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=1.25
$$

 نتيجه، Hب

$? \mathrm{~g} \mathrm{HCl}=25.0 \mathrm{~g} \mathrm{MnO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{MnO}_{2}}{86.9 \mathrm{~g} \mathrm{MnO}_{2}}\right)\left(\frac{4 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{MnO}_{2}}\right)$
$\left(\frac{36.5 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{HCl}}\right)$
$=42.0 \mathrm{~g} \mathrm{HCl}$
 MnO بر MnO_{γ} رابطهُ هو لمى به دست آمده از معادلهُ شيميايـى

$$
1 \mathrm{~mol} \mathrm{MnO}_{2} \approx 1 \mathrm{~mol} \mathrm{Cl}_{2}
$$

$? \mathrm{~g} \mathrm{Cl}_{2}=25.0 \mathrm{~g} \mathrm{MnO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{MnO}_{2}}{86.9 \mathrm{~g} \mathrm{MnO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{MnO}} 2\right)$

$$
\left(\frac{71.0 \mathrm{~g} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}\right)
$$

$$
=20.4 \mathrm{~g} \mathrm{Cl}_{2}
$$

مقداركربن مونوكسيلمو جود دريكاًاز راباواكنشزيرمى توانتعيينكرد،

$$
\mathrm{I}_{2} \mathrm{O}_{5}(\mathrm{~s})+5 \mathrm{CO}(\mathrm{~g}) \longrightarrow \mathrm{I}_{2}(\mathrm{~s})+5 \mathrm{CO}_{2}(\mathrm{~g})
$$

 $5 \mathrm{molCO}=1 \mathrm{~mol} \mathrm{I}_{2}$

همتحنين، لازم است بدانيم:
$1 \mathrm{~mol} \mathrm{I}_{2}=254 \mathrm{~g} \mathrm{I}_{2}$
$1 \mathrm{~mol} \mathrm{CO}=28.0 \mathrm{~g} \mathrm{CO}$
ضرايب تبليل به دست آمده از سه رابطة باللا را براى مسئله لازم
باسخ هسئله حنين است:
$? \mathrm{~g} \mathrm{CO}=0.192 \mathrm{~g} \mathrm{I}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{I}_{2}}{254 \mathrm{~g} \mathrm{I}_{2}}\right)\left(\frac{5 \mathrm{~mol} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{I}_{2}}\right)\left(\frac{28.0 \mathrm{~g} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{CO}}\right)$ $=0.106 \mathrm{~g} \mathrm{CO}$
j jog

 برابي
$? \mathrm{~mol} \mathrm{NH}_{3}=4.00 \mathrm{~g} \mathrm{NH}_{3}\left(\frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.0 \mathrm{~g} \mathrm{NH}_{3}}\right)=0.235 \mathrm{~mol} \mathrm{NH}_{3}$ $? \mathrm{~mol} \mathrm{~F} 2=14.0 \mathrm{~g} \mathrm{~F}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{~F}_{2}}{38.0 \mathrm{~g} \mathrm{~F}_{2}}\right)=0.368 \mathrm{~mol} \mathrm{~F}_{2}$

رإبطُّ استوكيومترى بهدست آمهـ از معادله واكنش به صورت（زير استى، $2 \mathrm{~mol} \mathrm{NH}_{3} \approx 5 \mathrm{~mol} \mathrm{~F}_{2}$
 NH بر بر بر با با

$$
\frac{0.235 \mathrm{~mol} \mathrm{NH}_{3}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=0.118
$$

 ．

$$
\frac{0.368 \mathrm{~mol} \mathrm{~F}_{2}}{5 \mathrm{~mol} \mathrm{~F}}=0.0736
$$

 مبناي مeكا رم

$$
? \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}=0.368 \mathrm{~mol} \mathrm{~F}_{2}
$$

 $5 \mathrm{~mol} \mathrm{~F}_{2} \approx 1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}$
$1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}=104 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}$
حل نهايمى مسئله به صورت زير خواهد بر د：
？ $\mathrm{g} \mathrm{N}_{2} \mathrm{~F}_{4}=0.368 \mathrm{~mol} \mathrm{~F}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}}{5 \mathrm{~mol} \mathrm{~F}_{2}}\right)\left(\frac{104 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}}\right)$

$$
=7.65 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}
$$

？ $\mathrm{mol} \mathrm{H}_{2}=5.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\left(\frac{4 \mathrm{~mol} \mathrm{H}_{2}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=5.00 \mathrm{~mol} \mathrm{H}_{2}$

V－Y بثال
和
تهيه كرد؟ هعlدلة شيميايمى واكثش به صورت زير است::

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{~F}_{4}(\mathrm{~g})+6 \mathrm{HF}(\mathrm{~g})
$$

$$
\begin{aligned}
& \text { محاسبات شيميا ابى بر اساسى معادلههاى شيميايى }
\end{aligned}
$$

> واحد كرم)، يكا نشانه تساوى و جرم جسم داده شالـه (بر حسب كرم) را مثشخص كنيد
（مخرج）مريوط مازد．
（个－
حذف شرند．

> واكنشدهمند باشلد
> ا ـ مقدار هو يك از وإكنشدهندهمها را بر حسب مـورل، از
كينيد

 . 500 ml .

غلظت هر سه محلول بالا، M • ربَ است.

 جقَدر است؟
 - fromol NaOH $\approx 11 . \mathrm{NaOH}$ لatar تع.اد مولهاي NaOH لازم براي تهية هحالول

هحاسبه شده است. علت اين امر ممكن است عمل نكـردن بـخشى از
 متغاوتى نسبت به واكنش اصلى عمل كنتد (واكنش هالى فرعى) بالاخره

A. 4 +

 (

در نتيجه درصد بازده بـ قراز زير خو اهد بود:

$$
\frac{4.80 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}}{7.65 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}} \times 100 \%=62.7 \%
$$

共 بسبا,

俍

 بح

$$
\begin{aligned}
& \text { مصاسبه كرد: }
\end{aligned}
$$

$$
\text { V, M }=\text { تعداد مول هإى ماده مل نـده: }
$$

صورت mol/L
.

$$
\begin{aligned}
& =(0,0 \cdot \cdot \mathrm{~L})(9, \ldots \mathrm{~mol} / \mathrm{L}) \\
& =r, \ldots \mathrm{~mol}
\end{aligned}
$$

 در نتّيجه،

$$
\begin{equation*}
V_{1} M_{1}=V_{2} M_{2} \tag{Y-Y}
\end{equation*}
$$

 خوانهد بود با:

$$
\begin{aligned}
V_{1} M_{1} & =V_{2} M_{2} \\
(0.500 \mathrm{~L})(6.00 \mathrm{M}) & =(2.00 \mathrm{~L}) M_{2} \\
M_{2} & =1.50 \mathrm{M}
\end{aligned}
$$

 براى بيان
 براى مسائل مربوط به رثيق سازى بـ كار ميروهـ

11-4

 بايد به كار رود؟

$=0, \circ \mathrm{~V} 0 \cdot \mathrm{~mol} \mathrm{NaOH}$

f. $\because \circ \mathrm{g} \mathrm{NaOH}=1 \mathrm{~mol} \mathrm{NaOH}$
$\S_{\mathrm{g}} \mathrm{NaOH}=0, \circ \vee \Delta m o l \mathrm{NaOH}\left(\frac{\mu_{0}, \circ \mathrm{~g} \mathrm{NaOH}}{m_{\mathrm{mol} \mathrm{NaOH}}}\right)=r_{, 0 \circ \mathrm{~g} \mathrm{NaOH}}$
 $=r, \circ \circ \mathrm{NaOH}$

$$
\begin{aligned}
& \text { 10. F F F } \\
& \text { (الفن) } \\
& \text { وجرد دارد؟ } \mathrm{AgNO}_{r}
\end{aligned}
$$

(الف) حل مسئله رابا نوشتز تساوى زير آفاز مىكنيم:

حیون غلظت AgNO

كـ از آن، ضريب تبديل لازم براى حل كردن مسئله را به دست مى آوربم:

$=\cdot, \cdot 10 \cdot \mathrm{~mol} \mathrm{AgNO}_{\Gamma}$
(ب) همين رابطه (بد صروت معكوس) براي حل اين مسـئله

> بدكار مىرو2.

$$
=A r, r \mathrm{~mL} \mathrm{AgNO}_{r} \mathrm{Na}_{\mathrm{J}}
$$

اغلب للاز است هصلول لها وا با رمين كردن واكتشگر هاى غليظ تهيه كرد.

 تهيهُ محلرل با غلظت معطلو ب به كار برد.

$$
\begin{aligned}
& \text { = } 20.0 \mathrm{~mL} \mathrm{NaOH} \text { مسلون }
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\frac{1000 \mathrm{~mL} \mathrm{NaOH} \text { jgha }}{0.750 \mathrm{~mol} \mathrm{NaOH}}\right)=20.0 \mathrm{~mL} \mathrm{NaOH}
\end{aligned}
$$

يك قرص سودواى نعناع حاوى NaHCO
 NaHCO مو جود در هر قـرص را بـر
 $\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$
 $\left(\frac{1 \mathrm{~mol} \mathrm{NaHCO}_{3}}{1 \mathrm{~mol} \mathrm{HCl}}\right) \times\left(\frac{84.0 \mathrm{~g} \mathrm{NaHCO}_{3}}{1 \mathrm{~mol} \mathrm{NaHCO}_{3}}\right)=0.400 \mathrm{~g} \mathrm{NaHCO}_{3}$

 را بــه تــعداد مــوله الىاى

 تبديل مىكند.
 تمونهالى از محلول Ba(OH) به حجم
 ($\mathrm{Ba}(\mathrm{OH})_{\gamma}$

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
$$

- J مو ، 1000 mL

$$
\begin{aligned}
V_{1} M_{1} & =V_{2} M_{2} \\
V_{1}(12.0 M) & =(500 \mathrm{~mL})(3.00 \mathrm{M}) \\
V_{1} & =125 \mathrm{~mL}
\end{aligned}
$$

 رسيلن به حتم 0.00 mL تهيه میكيم.

ما

 مسثلكالى نوشتن معادلهُ شيميا يمى است.

 موجرد در محلول، تعلاد مولنها را الز حجم نمونه و مرلا ملاريتئ مـحلول (تعداد مول در ليتر) به دست میآآوريم.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
$$

ابتدا، تعداد مول هأى ${ }^{\text {ت }}$? $\mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4}=50.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$ Uar $\left(\frac{0.150 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{1000 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{sol}^{\prime} \mathrm{n}}\right)$ $=0.00750 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$

از معادله واكنثى، نتيجه ميگيريمك كـ
$2 \mathrm{~mol} \mathrm{NaOH} \approx 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
بنابر|ين:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{NaOH} & =0.00750 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}\left(\frac{2 \mathrm{~mol} \mathrm{NaOH}_{1}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}\right) \\
& =0.0150 \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

 :
.

$$
\times\left(\frac{0.150 \mathrm{~mol} \mathrm{HCl}}{1000 \mathrm{~mol} \mathrm{HCl} \mathrm{~J}_{\mathrm{g}} \mathrm{ma}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{HCl}}\right)
$$

$=0.112 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$

حجكيدهُ مطالب

 نوثح

مناهيمركليـى Actual yield
 Chemical equation
 Coefficient
 Concentration
 (r - Y) Limiting reactant

 Molarity

$$
\begin{align*}
& \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \tag{ب}\\
& \mathrm{HBrO}_{3}(\mathrm{aq})+\mathrm{HBr}^{2 q} \longrightarrow \mathrm{Br}_{2}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \left.\mathrm{AuCl}(\mathrm{~s}) \longrightarrow \mathrm{AuCl}_{3}(\mathrm{qq})+\mathrm{cu}\right) \tag{د}
\end{align*}
$$

$\mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{FeCl}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ (الف)
$\mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{KCl}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$
 كتاب آمده أست.

> *
> 据
> (ا ـ
> $\mathrm{Al}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{AlCl}_{3}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ (الن)
> $\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{l})+\mathrm{Cu}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Cu}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g}) \quad(\varphi)$ $\mathrm{WC}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{WO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad(\tau)$ $\mathrm{Al}_{4} \mathrm{C}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{CH}_{4}(\mathrm{~g}) \quad(\mathrm{o})$

$$
\begin{aligned}
& \left.\mathrm{TiCl}_{4}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{TiO}_{2}(\mathrm{~s})+\mathrm{HCl}(\mathrm{~g}) \text { (} \mathrm{L}^{\text {al }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{l})
\end{aligned}
$$

$$
\begin{aligned}
& \text { را كامل فرض كنيد. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NH (g) ץ \%oog } \\
& \mathrm{CS}_{2}(\mathrm{I})+2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{4} \mathrm{SCN}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
\end{aligned}
$$

$$
\begin{aligned}
& \text { تهيه كرد جقعلد المت؟ NaOH } \\
& \mathrm{OF}_{2}(\mathrm{~g})+2 \mathrm{NaF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$$
3 \mathrm{SCl}_{2}(\mathrm{~g})+4 \mathrm{NaF}(\mathrm{~s}) \xrightarrow[\mathrm{SF}_{4}(\mathrm{~g})]{ }+\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})+4 \mathrm{NaCl}(\mathrm{~s})
$$

$$
3 \mathrm{NaBH}_{4}(\mathrm{~s})+4 \mathrm{BF}_{3}(\mathrm{~g}) \longrightarrow 3 \mathrm{NaBF}_{4}(\mathrm{~s})+2 \mathrm{~B}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

 زير است؛：
$3 \mathrm{LiBH}_{4}(\mathrm{~s})+3 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \longrightarrow$

$$
\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}(\mathrm{l})+9 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{LiCl}(\mathrm{~s})
$$

9
al
：

$$
\mathrm{Ca}_{3} \mathrm{P}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{PH}_{3}(\mathrm{~g})
$$

$$
\begin{aligned}
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \\
\mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})
\end{aligned}
$$

居

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \xrightarrow[\mathrm{CaCl}_{2}(\mathrm{aq})]{\longrightarrow}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

b ，
 ． شُدهو و مخلوط（g）
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{I}_{4} \mathrm{O}_{9}(\mathrm{~s}) \longrightarrow \mathrm{I}_{2} \mathrm{O}_{5}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
（ τ
$\mathrm{Ba}_{3} \mathrm{~N}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{~g})(\mathrm{s})$ ：F F F
$\mathrm{HNO}_{3}(\mathrm{l})+\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s}) \longrightarrow \mathrm{HPO}_{3}(\mathrm{l})+\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s}) \quad$（الفـ） $\mathrm{HNO}_{2}(\mathrm{aq}) \longrightarrow \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad(ب)$
$\mathrm{Al}(\mathrm{s})+\mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{NaAl}(\mathrm{OH})_{4}(\mathrm{aq})+(\tau)$ $\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{C}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{BCl}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
 ：C ${ }_{\gamma} H_{\Lambda}(\mathrm{l}$（

$$
\left.\mathrm{C}_{\lambda} \mathrm{H}_{1 \Lambda}(\mathrm{I}) \text { ، اكتان (}\right)
$$

． $\mathrm{O}_{\mathrm{Y}}(\mathrm{g})$（ 9
 ． $\mathrm{C}_{5} \mathrm{H}_{5}(1)$ بنرّ

 ．${ }^{0} \mathrm{C}_{0} \mathrm{H}_{0} \mathrm{~N}(\mathrm{l}$（

هسـانُلـى براساس معادلات شيهيهيايـ

 1， 1 را

 （ 10 （ 1 －\uparrow居

 مود2 نيأر استع「

$$
2 \mathrm{NaNH}_{2}(\mathrm{l})+\mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow
$$

$$
\mathrm{NaN}_{3}(\mathrm{~s})+\mathrm{NaOH}(\mathrm{~s})+\mathrm{NH}_{3}(\mathrm{~g})
$$

جند

$$
\begin{array}{r}
3 \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{KNO}_{3}(\mathrm{~s})+\underset{4 \mathrm{Nr}}{\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}(\mathrm{~s})
\end{array}
$$

＊
$\mathrm{PI}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 3 \mathrm{HI}(\mathrm{g})+\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{l})$
． فرض كنـا

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

 جنـدر است؟؟

$$
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\underset{\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq})}{\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})}+2 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

$$
\begin{gathered}
5 \mathrm{KNO}_{2}(\mathrm{aq})+2 \mathrm{KMnO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \\
5 \mathrm{KNO}_{3}(\mathrm{aq})+2 \mathrm{MnSO}_{4}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered}
$$

 dobe Ba $_{Y}\left(\mathrm{PO}_{\gamma}\right)_{\Gamma}(\mathrm{s})$

$$
3 \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \overrightarrow{\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})}+6 \mathrm{HCl}(\mathrm{aq})
$$

 ：
$2 \mathrm{AgNO}_{3}(\mathrm{aq})+\underset{\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq})}{\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})}+2 \mathrm{NaNO}_{3}(\mathrm{aq})$

$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{~s}) \longrightarrow$

$$
2 \mathrm{NaI}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}(\mathrm{aq})
$$

$4 \mathrm{KBrO}_{3}(\mathrm{aq})+\underset{\mathrm{KN}_{2}(\mathrm{~g})}{6 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l}) \longrightarrow 4 \mathrm{KBr}(\mathrm{aq})+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})}$

$\mathrm{Fe}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
 نـ 20．4
 $\mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{S}(\mathrm{s}) \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$

$$
\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

تركيبات تهجزيه شلدماند：

$$
\begin{aligned}
\mathrm{CaCO}_{3}(\mathrm{~s}) & \longrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) & \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

 $.0,10=M \cdot \mathrm{NaCl} 0, \mathrm{r} 0 \cdot \mathrm{~L}(\mathrm{Z}): 9, \ldots \mathrm{M}, \mathrm{H}_{Y} \mathrm{SO}_{4}$俍

 $0, r 0.0 M, \mathrm{BaCl}_{r} r \omega,=0 \mathrm{~mL}(\tau): 1,000 \mathrm{M}$居

俍

共
 $0, \mathrm{~T} \circ \circ \mathrm{M} \cdot \mathrm{NH}_{T} \circ, \mathrm{VOCL}(r): 0,00 \mathrm{M} \cdot \mathrm{H}_{+} \mathrm{PO}_{+}, 0,0 \mathrm{~mL}(u)$

واكنش هاى مو جود در هحلول

$$
2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(1)
$$

iver，；
$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
 Cinl jele

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \xrightarrow[\mathrm{NaC}_{2} \mathrm{O}_{4}(\mathrm{aq})]{ }+2 \mathrm{H}_{2} \mathrm{O}(1)
$$

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\underset{2 \mathrm{NaCl}(\mathrm{aq})}{2 \mathrm{HCl}(\mathrm{aq})}+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \overrightarrow{2 \mathrm{NaCl}(\mathrm{aq})}+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

 متحن

（ Cu（NO $\left.{ }_{\mu}\right)_{Y}$ $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \longrightarrow$

$$
2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{~s})
$$

$\mathrm{CuCl}(\mathrm{s}) \Delta_{j} 00 \mathrm{~g}$ 少
：تهيه كن

$$
\left.\begin{array}{rl}
2 \mathrm{CuCl}_{2}(\mathrm{aq})+ & \left.\underset{2 \mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})}{ }+\mathrm{CuCl}_{2} \mathrm{~s}\right)+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{l}) \longrightarrow
\end{array}\right)+2 \mathrm{HCl}(\mathrm{aq})
$$

，
 ．

 $\therefore=5$

$$
\begin{aligned}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{~s}) & +\underset{2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}(\mathrm{l})}{\left.4 \mathrm{KCl}_{2} \mathrm{~s}\right)}+3 \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{ll} \mathrm{SO}_{4}(\mathrm{~s})\right.
\end{aligned}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

躬

 واكتئنها بها صورت زبر است：

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \\
& 2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{AiCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

符 به صورت زَير است：

$$
\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

ry j 4 ¢ mL ،

$$
\begin{array}{r}
4 \mathrm{KBrO}_{3}(\mathrm{aq})+6 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l}) \\
6 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{KBr}(\mathrm{aq})+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{array}
$$

مسانُّل دسته بندى
：

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{l})+\mathrm{KI}(\mathrm{~s}) \longrightarrow \mathrm{KNO}_{3}(\mathrm{~s})+\mathrm{NO}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \quad\left(\mathrm{c}^{3} \mathrm{~s}\right)
$$

$$
\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \longrightarrow \mathrm{S}_{4} \mathrm{~N}_{4}(\mathrm{~s})+\mathrm{S}(\mathrm{~s})+\mathrm{HCl}(\mathrm{~g})
$$

$$
\mathrm{TiO}_{2}(\mathrm{~s})+\mathrm{C}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{TiCl}_{4}(\mathrm{l})+\mathrm{COCl}_{2}(\mathrm{~g})
$$

$$
\mathrm{AgClO}_{3}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{ClO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\mathrm{AgCl}(\mathrm{~s})+\mathrm{ClO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 （ب）（ب）
基 ：

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \xrightarrow[\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})]{ }
$$

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\begin{aligned}
& 5 \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{KMnO}_{4}(\mathrm{aq})+8 \mathrm{HCl}(\mathrm{aq}) \\
& 5 \mathrm{FeCl}_{3}(\mathrm{aq})+\mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{KCl}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

 مىتوان بلصورت زير انجأم داد:
 ميزان بالا بودن دما برحسب درجهُ فارنهايت نسبت به دماي انجهاد آب

است

 يعينمْ

در نتيجه،

 ها -

اندازهْ گيرى گرما

 ا0, 0 اتعريف مى شـد.

$$
1 \mathrm{cal}=4.184 \mathrm{~J} \text { (دقَّقاً) }
$$

در اينجا، اششاره بهـ جند نكته ضروري است: 1 - زولن و كالرى، واحدهاى نسبتأ كر جِى براى اتدازْكِيرى عقادير كُرما شيميايى هستند.

1. Andres Celsius
\therefore \therefore C C ,

 در لولةّ مو يين بالا مكرود.

 كـ

[^3]

شكل ه - - بك بهب گرماسنج

كرماسنج بهدرار زير است:

 قرار داده شُدهـ، آشاز مییشود.

 كل گَ ماسنج و محتوياتآنَا يعنى

$$
\begin{equation*}
C_{\text {toata }}=C_{\mathrm{H}_{4} \mathrm{O}}+C_{\text {cal }} \tag{9-0}
\end{equation*}
$$

 بددست آيد. تعيين اين مقدار، شامل اندازمگيرى افزايشى دماى گرماسنج

 گزازرش ميشدند.

$$
\text { (} \ddagger, \mid A \nmid \text { F/cal })
$$人

$1,000 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{C}\right) \quad \mathrm{L}$

㽣
 براي بالا بردن دما
 بالا بردن دماى وا الز جسم به ميزان
 برابر أست با:

$$
\begin{align*}
C & =(p, 7)(0), \mathrm{s} / \mathrm{s}, \mathrm{\xi}) \\
& =[125 \mathrm{~g}]\left[4.184 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)\right] \\
& =523 \mathrm{~J} /{ }^{\circ} \mathrm{C}
\end{align*}
$$

 برايى افزايش دما به ميزاذ 2اشت، بـطرِركلّى،

$$
\begin{equation*}
q=C\left(t_{2}-t_{1}\right) \tag{0-0}
\end{equation*}
$$

 و
 بهصور رت زير متاساسبه مى شـود:

$$
\begin{align*}
q & =C\left(t_{2}-t_{1}\right) \tag{0-0}\\
& =\left(523 \mathrm{~J} /{ }^{\circ} \mathrm{C}\right)\left(25.00^{\circ} \mathrm{C}-20.00^{\circ} \mathrm{C}\right) \\
& =\left(523 \mathrm{~J} /{ }^{\circ} \mathrm{C}\right)\left(5.00^{\circ} \mathrm{C}\right) \\
& =2615 \mathrm{~J}=2.62 \mathrm{~kJ}{ }^{*}
\end{align*}
$$

$$
47.0 \mathrm{~kJ} \approx 3.00 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

 $? \mathrm{~kJ}=180 . \mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\left(\frac{47.0 \mathrm{~kJ}}{3.00 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}\right)=2.82 \times 10^{3} \mathrm{~kJ}$

ا.
 0 - ا به ترال زيبر است:
$\mathrm{C}_{\gamma} \mathrm{H}_{4 \mathrm{~T}} \mathrm{O}_{\varphi}+9 \mathrm{O}_{\gamma}(\mathrm{g}) \longrightarrow 9 \mathrm{CO}_{\Gamma}(\mathrm{g})+9 \mathrm{H}_{Y} \mathrm{O}(\mathrm{l})$
توجه كنبد كا 9 مول كُاز (كاز

 أنزايش دما

$$
\begin{equation*}
\mathrm{q}=C_{J 5}\left(t_{2}-t_{1}\right) \tag{0-0}
\end{equation*}
$$

مثال ه - 1

$$
\left.\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{Ol}\right)
$$

 هـحتويات آن بـه كرماسنج
 حِيْ

$$
\begin{aligned}
C & =(\rho, ج)\left(0,9, v^{\prime}, \xi\right) \\
C_{\mathrm{H}, \mathrm{O}} & =\left[1.20 \times 10^{3} \mathrm{~g}\right]\left[4.18 \mathrm{~J} /\left(\mathrm{g}^{0} \mathrm{C}\right)\right] \\
& =5.02 \times 10^{3} \mathrm{~J} /{ }^{\circ} \mathrm{C}=5.02 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

ظرفيت گرمانيى گرماسنج، ، كِّ مايىى كل، C، برابر است با:

$$
\begin{aligned}
C_{\text {total }} & =C_{\mathrm{H}, \mathrm{O}}+C_{\text {cal. }} \\
& =5.02 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}+2.21 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \\
& =7.23 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

درنتيجه، مقدلار

$$
\begin{align*}
q & =C_{\text {toaat }\left(t_{2}-t_{1}\right)} \\
& =\left(7.23 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\right)\left(25.50^{\circ} \mathrm{C}-19.00^{\circ} \mathrm{C}\right) \\
& =\left(7.23 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\right)\left(6.50^{\circ} \mathrm{C}\right) \\
& =47.0 \mathrm{~kJ}
\end{align*}
$$

شكل

 كسرى از يك مول از جسسم است. بنابراين؛

$$
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-286 \mathrm{~kJ}
$$

 :

$$
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-242 \mathrm{~kJ}
$$

 آنز كاز

(l) هنگامىكيكيواكنش بر عكس شوده عامت

$$
\begin{array}{rlrl}
\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~s}) \longrightarrow \mathrm{HI}(\mathrm{~g}) & \Delta H & =+25.9 \mathrm{~kJ} \\
\mathrm{HI}(\mathrm{~g}) & \longrightarrow \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~s}) & \Delta H & =-25.9 \mathrm{~kJ}
\end{array}
$$

 آخر در Y ضرب شوده، مقدار
$2 \mathrm{HI}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \quad \Delta H=2(-25.9 \mathrm{~kJ})=-51.8 \mathrm{~kJ}$
 عدد تقسيم كرد.
 خا خصه كرد:

$$
\Delta H_{f}^{\circ}
$$

$$
\begin{equation*}
\Delta H=H_{\text {laoc , 思j }}-H_{\text {ladinas }} \tag{v-0}
\end{equation*}
$$

 Y Y Y Y Y Y و

 .

 b Y - 1.

هشخصركرد.

 $\mathrm{CO}_{+} \mathrm{SO}+\mathrm{L}$＋ CO CO

$$
\begin{aligned}
& \mathrm{C}\left(\mathrm{H}, \mathrm{H}_{3}, \xi^{3}\right)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{~g}) \quad \Delta H=-110.5 \mathrm{~kJ} \\
& \begin{aligned}
\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \\
\mathrm{C}\left(-21 \mathrm{~g}^{\prime}\right)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned} \quad \frac{\Delta H=-283.0 \mathrm{~kJ}}{\Delta H}=-393.5 \mathrm{~kJ}
\end{aligned}
$$

جون با

$\mathrm{C}(4, \mathrm{H})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=-393.5 \mathrm{~kJ}(\mathrm{~A}-\mathrm{O})$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-285.9 \mathrm{~kJ}(9-\Delta)$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$（l）（ $\left.\mathrm{l} \cdot-\mathrm{a}\right)$

$$
\Delta H=-890.4 \mathrm{~kJ}
$$

 CH_{4}

$\left(-\mathrm{O}_{\mathrm{i}(\xi)}, 2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta H=\right.$ ？
有
 قبلى آن مى نريسيس：
$\mathrm{C}_{(-\mathrm{a}(\mathrm{B}, \mathrm{s})}+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=-393.5 \mathrm{~kJ}(\mathrm{~s}-\Delta)$二小
 م مغ

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-571.8 \mathrm{~kJ}(\mathrm{li}-\mathrm{\Delta})
$$

1．G．H．HES
㳥 ΔH

 DH
 ｜استوكيومترى حل مى شوندا

r－مثال

－
$2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \Delta H=-848 \mathrm{~kJ}$
 حل حH $-848 \mathrm{~kJ} \approx 2 \mathrm{~mol} \mathrm{Al}$
خري ن وزن اتمى اN براير با

$$
? \mathrm{~kJ}=36.0 \mathrm{~g} \mathrm{Al}\left(\frac{1 \mathrm{~mol} \mathrm{Al}}{27.0 \mathrm{~g} \mathrm{Al}}\right)\left(\frac{-848 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{Al}}\right)=-565 \mathrm{~kJ}
$$

$$
\mathrm{C}\left(-\mathrm{i}(\xi)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=-393.5 \mathrm{~kJ}\right.
$$

彻

 مختلف الين تعر فـ را بايل توضيح داد.
 و عناصرى در حالتهاي انستانداردشـان باشد.

 و) ΔH_{f}°,

$$
\mathrm{C}(=, 5) \longrightarrow \mathrm{C}(\mathrm{~m}(\mathrm{~L}) \mathrm{L}) \quad \Delta H^{\circ}=+1.9 \mathrm{~kJ}(19-0)
$$

$\mathrm{C}\left((\mathrm{H} / \mathrm{S})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta H^{\circ}=-393.5 \mathrm{~kJ}(1 \mathrm{Y}-0)\right.$
$\mathrm{C}\left(\Omega \mathrm{Na}^{\mathrm{I}}\right)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta H^{\circ}=-395.4 \mathrm{~kJ}(\mathrm{IA}-\Delta)$

$$
\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g}) \quad \Delta H^{\circ}=+142 \mathrm{~kJ} \quad(19-0)
$$

 حبرن در آن موارد، تفاوت

$$
\begin{aligned}
& \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \\
& \Delta H=+890.4 \mathrm{~kJ} \quad(\mathrm{lr}-\Delta)
\end{aligned}
$$

. و (CO ، ، بO

$$
\begin{gather*}
\mathrm{C}_{(\mathrm{c}, \mathrm{~g})}+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta H=-393.5 \mathrm{~kJ} \quad(\mathrm{~A}-0) \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta H=-571.8 \mathrm{~kJ}(\mathrm{II}-0) \\
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \tag{1r-0}\\
\mathrm{C}_{(\mathrm{e}, 515)}+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})
\end{gather*}
$$

$$
\frac{\Delta H=+890.4 \mathrm{~kJ}}{\Delta H=-74.9 \mathrm{~kJ}}
$$

 H.O Jo

$$
\begin{aligned}
& 4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta H=-1531 \mathrm{~kJ} \\
& \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \Delta H=-367.4 \mathrm{~kJ} \\
& \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \text { هقدار } \\
& 2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{NH}_{3}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta H=-765.5 \mathrm{~kJ} \\
& 3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta H=-1102.2 \mathrm{~kJ} \\
& 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \Delta H=+857.7 \mathrm{~kJ} \\
& \text { طرفـ } \\
& \text { طرف مe } \\
& 2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta H=-1010.0 \mathrm{~kJ}
\end{aligned}
$$

 هحاسباتى كي در بخشش ه - ها آمعه است

$$
\mathrm{C}(\mathrm{C}
$$

$$
\Delta H_{f}^{\circ}=-74.9 \mathrm{~kJ}
$$

 واكنش زير:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \Delta H^{\circ}=?
$$

 محاسبه كرد:

$$
\begin{align*}
& 2 \mathrm{C}\left(0 \mathrm{H}_{\mu}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \quad \Delta H_{\mathrm{f}}^{0}=+52.30 \mathrm{~kJ}\right. \\
& 2 \mathrm{C}\left(=\mathrm{H}^{(\mathrm{e}}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \Delta H_{\mathrm{f}}{ }^{\circ}=-84.68 \mathrm{~kJ}\right. \tag{r1-0}
\end{align*}
$$

 ($\mathrm{C}_{\mathrm{Y}} \mathrm{H}_{+}(\mathrm{g})$

 .

$$
\begin{aligned}
& \frac{2 \mathrm{C}(-\mathrm{H} 1 \mathrm{~g}) \mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})}{\mathrm{C}_{4} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})} \quad \frac{\Delta H_{f}^{\circ}=-84.68 \mathrm{kI}}{\Delta H_{f}^{\circ}=-136.98 \mathrm{~kJ}}
\end{aligned}
$$

 را درنظر گرفت:
2
2

 برصورت دو اتمى هستنـ (

 atm

 أنتاليى تشكيل، نوع معينى از تغيير آنتالِى است. در واقع معادير
 معادير

$$
\begin{aligned}
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H_{f}^{\circ} & =-285.9 \mathrm{~kJ} \\
\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HI}(\mathrm{~g}) & \Delta H_{f}^{\circ} & =+25.9 \mathrm{~kJ}
\end{aligned}
$$

$2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

$$
\Delta H^{\circ}=-2 \Delta H_{f}^{\circ}=+92.38 \mathrm{~kJ}
$$

در واكنش (يعنى

$$
3 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{HCl}^{(\mathrm{g})}
$$

$$
\frac{2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})}{2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{~g})}
$$

$$
\begin{aligned}
& \Delta H^{\circ}=6 \Delta H_{f}^{\circ}=-553.80 \mathrm{~kJ} \\
& \Delta H^{\circ}=-2 \Delta H_{f}^{*}=+92.38 \mathrm{~kJ} \\
& \hline \Delta H^{\circ}=\quad-461.42 \mathrm{~kJ}
\end{aligned}
$$

و (If $\mathrm{Cl}_{Y}(\mathrm{~g})$) عبارت (
 تدارك ويئها
r.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

0. 0 هثال

بر مبناي

$$
\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+6 \mathrm{H}_{2}(\mathrm{~g})
$$

$$
\Delta H^{\triangleright}=-493.4 \mathrm{~kJ}
$$

 در اين مورد، مندار ΔH° هر واكتش معلوم است و متدار ΔH° بكى از موارد واكنثد دهنده را نيز بهدست مى آَوريب:

$\Delta H^{\circ}=2 \Delta H_{f}^{\circ}\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)-\left[\Delta H_{f}^{\circ}\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)+6 \Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ $-493.4 \mathrm{~kJ}=(2 \mathrm{~mol})(-1088.7 \mathrm{~kJ} / \mathrm{mol})-\left[(1 \mathrm{~mol}) \Delta H_{f}^{c}\left(B_{2} H_{6}\right)\right.$ $+(6 \mathrm{~mol})(-285.9 \mathrm{~kJ} / \mathrm{mol})]$

$$
\begin{aligned}
& =3 \Delta H_{f}\left(\mathrm{CO}_{2}\right)-\left[\Delta H_{f}^{*}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)+3 \Delta H_{f}(\mathrm{CO})\right] \\
& =(3 \mathrm{~mol})(-393.5 \mathrm{~kJ} / \mathrm{mol})-[(1 \mathrm{~mol})(-822.2 \mathrm{~kJ} / \mathrm{mol}) \\
& +(3 \mathrm{~mol})(-110.5 \mathrm{~kJ} / \mathrm{mol})] \\
& =-1180.5 \mathrm{~kJ}+1153.7 \mathrm{~kJ}=-26.8 \mathrm{~kJ}
\end{aligned}
$$

استغاده از آنتالتى تشكيل برایى بهدست آوردن هتادير
1
Y - عبارتهاى معادله زير را جايگز: نز كنيد:"

الف - عبارت
 ب - عبارت (و)

 ضرب ميكنيمـ
براي عناصرى كه در فشار

- ا

 تعداد موللهایى
 , $\sum \Delta H_{f(\text { angaj) }}^{\circ}$)

$2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{g}) \quad \Delta H^{\circ}=?$

$3 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{HCl}(\mathrm{g})$

$$
\Delta H^{\circ}=6 \Delta H_{S}=-553.80 \mathrm{~kJ}
$$

 (نيز NH $\mathrm{NH}_{\varphi}(\mathrm{g})$

$$
\begin{aligned}
& =6 \Delta H_{f}(\mathrm{HCl})-2 \Delta H_{f}\left(\mathrm{NH}_{3}\right) \\
& =(6 \mathrm{~mol})(-92.30 \mathrm{~kJ} / \mathrm{mol})-(2 \mathrm{~mol})(-46.19 \mathrm{~kJ} / \mathrm{mol}) \\
& =-553.80 \mathrm{~kJ}+92.38 \mathrm{~kJ}=-461.42 \mathrm{~kJ}
\end{aligned}
$$

 انرثى كل لازم براى شيكستن بيرندها $(\Delta H=+\mu \mu \Delta \mathrm{kJ}+7 \mathrm{FrkJ}=+9 \mathrm{VAKJ})$
,
 واكنشرهاى زير را درنظر بـيزيدي:
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g}) \quad \Delta H=2 \Delta H_{f}^{\circ}=+180.74 \mathrm{~kJ}$

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}(\mathrm{~g}) \quad \Delta H=+941 \mathrm{~kJ}
\end{aligned}
$$

 تشكيل بيوندها. واكنش گرمهائير است:

$$
\Delta H=+1435 \mathrm{~kJ}-1254 \mathrm{~kJ}=+181 \mathrm{~kJ}
$$

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{~g}) \quad \Delta H=+181 \mathrm{~kJ}
$$

 اين شيوه راگحترش

 مى

$$
\mathrm{H}-\mathrm{O}-\mathrm{H}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

$$
\Delta H=+926 \mathrm{~kJ}
$$

$$
\begin{aligned}
-493.4 \mathrm{~kJ} & =-2177.4 \mathrm{~kJ}-\left[(1 \mathrm{~mol}) \Delta H_{f}^{\circ}\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)-1715.4 \mathrm{~kJ}\right] \\
-493.4 \mathrm{~kJ} & =-462.0 \mathrm{~kJ}-(1 \mathrm{~mol}) \Delta H_{f}^{\circ}\left(\mathrm{B}_{2} \mathrm{H}_{6}\right) \\
\Delta H_{f}\left(\mathrm{~B}_{2} \mathrm{H}_{6}\right) & =+31.4 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

 :H-H بـصورت

$$
\begin{aligned}
\mathrm{H}-\mathrm{H}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{~g}) & \Delta H & =+435 \mathrm{~kJ} \\
\mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}(\mathrm{~g}) & \Delta H & =+243 \mathrm{~kJ} \\
\mathrm{H}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{H}(\mathrm{~g})+\mathrm{Cl}(\mathrm{~g}) & \Delta H & =+431 \mathrm{kJJ}
\end{aligned}
$$

 تغيير كند:

$$
\mathrm{H}(\mathrm{~g})+\mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{H}-\mathrm{Cl}(\mathrm{~g}) \quad \Delta H=-431 \mathrm{~kJ}
$$

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{g}) \quad \Delta H=2 \Delta H_{j}^{\circ}=-184.6 \mathrm{~kJ}$ مقذار ΔH اين واكنش، دو برابر آنتالّى تشكيل HCl(g) است، زيـرا
 ر $\Delta \mathrm{H}$

$$
:=\sim \mathrm{H}-\mathrm{Cl}
$$

$$
\begin{aligned}
\mathrm{H}-\mathrm{H}(\mathrm{~g}) & \longrightarrow 2 \mathrm{H}(\mathrm{~g}) & \Delta H & =+435 \mathrm{~kJ} \\
\mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) & \longrightarrow 2 \mathrm{l}(\mathrm{~g}) & \Delta H & =+243 \mathrm{~kJ} \\
2 \mathrm{H}(\mathrm{~g})+2 \mathrm{Cl}(\mathrm{~g}) & \longrightarrow \mathrm{H}-\mathrm{Cl}(\mathrm{~g}) & \Delta H=2(-431 \mathrm{~kJ}) & =-862 \mathrm{~kJ}
\end{aligned}
$$

جمع معادلههاى بالا، قتنين است:
$\mathrm{H}-\mathrm{H}(\mathrm{g})+\mathrm{Cl}-\mathrm{Cl}(\mathrm{g}) \longrightarrow 2 \mathrm{H}-\mathrm{Cl}(\mathrm{g})$ $\Delta H=-184 \mathrm{~kJ}$
 ΔH

$\mathrm{N}-\mathrm{N}$	$+159 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{C}+347 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{N}$
$\mathrm{N}=\mathrm{N}$	$+293 \mathrm{~kJ} / \mathrm{mol}$		
$\mathrm{N}=\mathrm{N}$	$+4 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{C}+619 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{N}$
$\mathrm{N}=\mathrm{N}$	$+616 \mathrm{~kJ} / \mathrm{mol}$		
$\mathrm{NJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{C}+812 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{N}$	$+879 \mathrm{~kJ} / \mathrm{mol}$

 بايد سهـ عامل را درنظر كـرفت:

باله -

 حساب كنيد: $2 \mathrm{H}-\mathrm{N}-\mathrm{H}(\mathrm{g})+3 \mathrm{Cl}-\mathrm{Cl}(\mathrm{g}) \longrightarrow \mathrm{N} \equiv \mathrm{N}(\mathrm{g})+6 \mathrm{H}-\mathrm{Cl}(\mathrm{g})$

ل

ب".

$$
\begin{array}{cl}
\mathrm{H}-\mathrm{O}-\mathrm{H}(\mathrm{~g}) \longrightarrow \mathrm{H}(\mathrm{~g})+\mathrm{O}-\mathrm{H}(\mathrm{~g}) & \Delta H=+501 \mathrm{~kJ} \\
\mathrm{O}-\mathrm{H}(\mathrm{~g}) \longrightarrow \mathrm{O}(\mathrm{~g})+\mathrm{H}(\mathrm{~g}) & \Delta H=+425 \mathrm{~kJ}
\end{array}
$$

 (يبرند

 $\Delta H L$ ）

درنتّجهي：

6 mol of $\mathrm{N}-\mathrm{H}$ Ladig $\quad 6 \mathrm{~mol}(+389 \mathrm{~kJ} / \mathrm{mol})=+2334 \mathrm{~kJ}$
3 mol of $\mathrm{Cl}-\mathrm{Cl}$ ها Cl ن $3 \mathrm{~mol}(+243 \mathrm{~kJ} / \mathrm{mol})=+729 \mathrm{~kJ}$ ：ينيوناهاهي تشـكيل ششده

 （يتنى（

قرإنبن H

$$
\begin{aligned}
& 2 \mathrm{H}-\mathrm{N}-\mathrm{H}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}(\mathrm{~g})+6 \mathrm{H}(\mathrm{~g}) \\
& \Delta H=6(+389 \mathrm{~kJ})=+2334 \mathrm{~kJ} \\
& \text { سه مول } \\
& 3 \mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow 6 \mathrm{Cl}(\mathrm{~g}) \\
& \Delta H=3(+243 \mathrm{~kJ})=+729 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{~N}(\mathrm{~g}) \longrightarrow \mathrm{N}=\mathrm{N}(\mathrm{~g}) \quad \Delta I=-94 \mathrm{lkJ}
\end{aligned}
$$

$$
\begin{aligned}
& 6 \mathrm{H}(\mathrm{~g})+6 \mathrm{Cl}(\mathrm{~g}) \longrightarrow 6 \mathrm{H}-\mathrm{Cl}(\mathrm{~g}) \\
& \Delta H=6(-431 \mathrm{~kJ})=-2586 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{~g}) \\
& \Delta H=-464 \mathrm{~kJ}
\end{aligned}
$$

 Lo 弓 ulates \＆ $2 j$ ，

ΔH 首

 مقياس سـلسيوس الست

 3 أكنی

药
 راك

 ～n ΔH ，

 آبا Calorie，cal

مفاهيم كلينـي

Bond energy تـ

$$
\because
$$

جوثّ ترمال آبي

 Heat capacity
 Joule, J $1 \mathrm{kgm}{ }^{\varphi} / \mathrm{s}^{\mu}$. Law of Hess, Law of constant heat summation

 Polyatomic molecule

شُامل بيشّ از دد اتم باثند. Specific heat
 Temperature
 Thermochemistry شربوط به تغييرات ثيمبابی و فيزبكى.

 ا

 - 90 okg

معادلات كرماشيميايى

$$
\left.\mathrm{Br}_{2}(1)+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{BrCl}_{\mathrm{g}}\right) \Delta H=+29.4 \mathrm{~kJ} \quad \text { (لن) }
$$

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \Delta H=-176 \mathrm{~kJ}
$$

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta H=+58.0 \mathrm{~kJ}
$$

$$
\begin{equation*}
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CCl}_{4}(\mathrm{l})+\underset{\Delta H}{ } \mathrm{~S}_{2} \mathrm{Cl}_{2}(\mathrm{l}) \tag{د}
\end{equation*}
$$

(

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N} \cdot(\mathrm{~g}) \Delta H=+42.7 \mathrm{~kJ} \text { (ell) }
$$

* آهده است.
تبريت مئشود.

Calorimeter
 Celsius temperature scale هقياس انمازم دماي جوش نرمال آب مبتنى است. (بشتش Qndothermic reaction

Energy Enthalpy, H

 Enthalpy of formation

 تيبميإبي كد كرما آلزد كند. Fahrenheit temperature scale

مسائل

انذازه گيرى دما، گرماسنـج ا 0

 SE- 0 8-0 9

 fink

 سرب اذ

路
 جقا (號 بيده استا 10-0.
 .
$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{BCl}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+3 \mathrm{HCl}(\mathrm{g}) \quad$ (al) $\Delta H=-112.5 \mathrm{~kJ}$
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+6 \mathrm{H}_{2}(\mathrm{~g}) \quad(\mathrm{g})$
$\Delta H=-493.4 \mathrm{~kJ}$
$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HCl}(\mathrm{g}) \quad \Delta H=-92.3 \mathrm{~kJ} \quad(\mathrm{\imath})$

$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{BCl}_{3}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{g})$

- Q O
$\mathrm{OF}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g})$
$\Delta H=-276.6 \mathrm{~kJ}$
$\mathrm{SF}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+4 \mathrm{HF}(\mathrm{g}) \quad 4 \mathrm{H}=-827.5 \mathrm{~kJ}$
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta H=-296.9 \mathrm{~kJ}$

$2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{OF}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{SF}_{4}(\mathrm{~g})$

$$
\mathrm{OSCl}_{2}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{SO}_{2}(\mathrm{~g})+2 \underset{\Delta H=}{2 \mathrm{HCl}(\mathrm{~g})}+10.3 \mathrm{~kJ} \text { (ill) }
$$

$$
\mathrm{PCl}_{3}(\mathrm{l})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{OPCl}_{3}(\mathrm{l}) \quad \Delta H=-325.1 \mathrm{~kJ}
$$

$$
\mathrm{P}(\mathrm{~s})+{ }_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{PCl}_{3}(1) \Delta H=-306.7 \mathrm{~kJ}
$$

$$
\begin{array}{r}
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+ \\
\hline
\end{array} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) .202 .6 \mathrm{~kJ} .
$$

. هـدار
$2 \mathrm{P}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})+5 \mathrm{Cl}_{2}(\mathrm{~g}) \underset{2 \mathrm{OSCl}_{2}(\mathrm{l})}{ }+2 \mathrm{OPCl}_{3}(\mathrm{l})$

$2 \mathrm{ClF}_{3}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow$
$\mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HF}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta H=-1195.6 \mathrm{~kJ}$
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H=-622.4 \mathrm{~kJ} \quad(ب)$
$\begin{aligned} & 4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \Delta \mathrm{H}=-1530.6 \mathrm{~kJ}\end{aligned}$

$3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l})+4 \mathrm{ClF}_{3}(\mathrm{~g}) \longrightarrow$
$3 \mathrm{~N}_{2}(\mathrm{~g})+12 \mathrm{HF}(\mathrm{g})+2 \mathrm{Cl}_{2}(\mathrm{~g})$
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2}(\mathrm{~g}) \Delta H=-89.4 \mathrm{~kJ}$
$\mathrm{SnCl}_{2}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SnCl}_{4}(\mathrm{l}) \quad \Delta H=-195.4 \mathrm{~kJ} \quad(\mathrm{\imath})$
$2 \mathrm{HgO}(\mathrm{s}) \longrightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta H=+181.4 \mathrm{~kJ}$

 .
斯 سوخت ,

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\Delta H=-622.4 \mathrm{~kJ}
$$

الز س, الز俍 اتيّل|

Lر الث أزا
:
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g}) \quad \Delta H=+42.7 \mathrm{~kJ}$

$2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\Delta H=-1010 \mathrm{~kJ}
$$

 أزا
:

$$
\begin{align*}
\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g}) \\
\Delta H=-562.6 \mathrm{~kJ} \\
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) \tag{ب}\\
\Delta H=-1075.2 \mathrm{~kJ}
\end{align*}
$$

.

$$
\mathrm{CS}_{2}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \underset{: \mathrm{CO}_{2}(\mathrm{~g})}{\longrightarrow}+{ }_{2} \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

$$
\begin{gather*}
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \tag{الف}\\
\Delta \mathrm{H}=-1010 \mathrm{~kJ} \\
4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta H=-1531 \mathrm{~kJ}
\end{gather*}
$$

شیدار $\mathrm{N}_{2}(\mathrm{~g})+\frac{\left.\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O} \mid \mathrm{g}\right)}{}$: 0

 ，
 ，در ，

 بV Y 0 O

$$
\begin{array}{r}
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{CaCN}_{2}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta H^{\circ}=+90.1 \mathrm{~kJ}
\end{array}
$$

 A F F
$\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{f}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
$\Delta H^{\circ}=-125.3 \mathrm{~kJ}$
 ．1．5 aculena

انرزّى ，بيوند
相 تشتكيل مقأبسا كنيّد．左 تشكيل
$\mathrm{N}=\mathrm{N}(\mathrm{g})+2 \mathrm{H}-\mathrm{H}(\mathrm{g}) \longrightarrow \mathrm{H}-\mathrm{N}-\mathrm{N}-\mathrm{H}(\mathrm{g})$
H H
O O 0

$$
\mathrm{XeF}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HF}(\mathrm{~g})+\mathrm{Xe}(\mathrm{~g})
$$

$$
\Delta H=-430 \mathrm{~kJ}
$$

و التوز يبونـا

 $\Delta H(T-\partial J, 1 \rightarrow)$（ \quad ） واكثش زير وا محاسبـ كنيلد：

：

$$
\begin{gathered}
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HNO}_{3}(\mathrm{l}) \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \\
\Delta H=-145.7 \mathrm{~kJ} \\
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta H=-125.2 \mathrm{~kJ} \\
3 \mathrm{NO}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta H=-1169.2 \mathrm{~kJ} \\
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta H=-1169.2 \mathrm{~kJ} \\
\mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta H=-56.6 \mathrm{~kJ}
\end{gathered}
$$

مشدار

$$
\begin{align*}
& 3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{HNO}_{3}(\mathrm{l})+\mathrm{NO}(\mathrm{~g}) \\
& \text { : } \\
& 2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \text { (eil) } \\
& \Delta H=-1010 . \mathrm{kJ} \\
& \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad(ب) \\
& \Delta H=-317 . \mathrm{kJ} \\
& \begin{aligned}
2 \mathrm{NH}_{3}(\mathrm{~g}) & +\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow
\end{aligned} \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-143 \mathrm{~kJ} \\
& \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{ll}) \Delta \mathrm{H}=-286 . \mathrm{kJ} \tag{o}
\end{align*}
$$

號

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

آنتالِي تشيكيل
الـ 0

AgCl（s），$-127 \mathrm{~kJ} / \mathrm{mol}$（الف）
$\mathrm{NO}_{2}(\mathrm{~g}),+33.8 \mathrm{~kJ} / \mathrm{mol}(ب)$
$\mathrm{CaCO}_{3}(\mathrm{~s}),-1206.9 \mathrm{~kJ} / \mathrm{mol}$（飞）
而
）
$\mathrm{CS}_{2}(\mathrm{I}),+87.86 \mathrm{~kJ} / \mathrm{mol}(ب)$
$\mathrm{HCN}(\mathrm{g})_{2}+130.5 \mathrm{~kJ} / \mathrm{mol}$（ل）
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}),-365.1 \mathrm{~kJ} / \mathrm{mol}(-)$
－－－
楊 $\Delta \mathrm{H}^{\circ}$
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g})$
－－ 0明 $\Delta \mathrm{H}^{\circ}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
（－O
 $2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$ $2 \mathrm{HCN}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
 ，ΔH°
$\mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NF}_{3}(\mathrm{~g})+3 \mathrm{HF}(\mathrm{g})$

碞

$$
\mathrm{C}(\mathrm{E}(\mathrm{i}(\mathrm{~S}) \longrightarrow \mathrm{C}(\mathrm{~g}) \quad \Delta H=+717 \mathrm{~kJ}
$$

 تشكيل

$$
\mathrm{C}(\sim \mathrm{e} \mid, 5)+2 \mathrm{H}-\mathrm{H}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{H}
$$

$$
C(\because, 1,5) \longrightarrow C(g) \quad \Delta H=+717 \mathrm{~kJ}
$$

 : =0

$$
2 \mathrm{ClF}_{3}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow
$$

$$
\mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HF}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=-1195.6 \mathrm{~kJ}
$$

$$
\text { و - } 0
$$

$$
\text { - - } 0
$$

$$
\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~s})
$$

$$
\Delta H=-397 \mathrm{~kJ}
$$

$$
\begin{equation*}
\mathrm{PCl}_{5}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~s})+\underset{\Delta H=-136 \mathrm{~kJ}}{5 H \mathrm{~g})} \tag{ب}
\end{equation*}
$$

$\mathrm{OPCl}_{3}(\mathrm{l})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~s})+3 \mathrm{HCl}(\mathrm{g})$

$$
\Delta H=-68 \mathrm{~kJ}
$$

$$
\text { مقدار } \Delta H \text { واكثش زبر را بيابيل: }
$$

$$
\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{PCl}_{5}(\mathrm{~s}) \longrightarrow 100 \mathrm{PCl}_{3}(\mathrm{l})
$$

准 $\mathrm{H}_{Y} \mathrm{C}_{0} \mathrm{H}_{8} \mathrm{O}_{F}(\mathrm{~s})$ (بهب گُرماسنع در (g)
 1,000

$$
\begin{aligned}
4 \mathrm{H}-\mathrm{N}-\mathrm{H}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) & \\
& 2 \mathrm{~N} \equiv \mathrm{~N}(\mathrm{~g})+6 \mathrm{H}-\mathrm{O}-\mathrm{H}(\mathrm{~g})
\end{aligned}
$$

$\Delta H(Y-0$ و 0 و 0 - 0
واكتش زبر را هسالسبه كيندي

 ,

$$
4 \mathrm{H}-\mathrm{Cl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \underset{2 \mathrm{H}}{\longrightarrow}-\mathrm{O}-\mathrm{H}(\mathrm{~g})+2 \mathrm{Cl}-\mathrm{Cl}(\mathrm{~g})
$$

$$
\mathrm{F}-\mathrm{O}-\mathrm{F}(\mathrm{~g})+\mathrm{H}-\mathrm{O}-\mathrm{H}(\mathrm{~g}) \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}-\mathrm{F}(\mathrm{~g})
$$

 راكثش زير را محاسبه كنيدت:

 ΔH (

واكنيّ زبر را هحاسبـه كنيد :

㳯 تشكيل

$$
\begin{aligned}
& \frac{1}{2} \mathrm{H}-\mathrm{H}(\mathrm{~g})+\mathrm{C}(\underset{\square}{4})+\frac{1}{2} \mathrm{~N} \equiv \mathrm{~N}(\mathrm{~g}) \xrightarrow[\mathrm{H} \quad \mathrm{C}=\mathrm{N}(\mathrm{~g})]{\longrightarrow}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C C C C = N }
\end{aligned}
$$

$$
\begin{aligned}
& n=1,+, \ldots v \operatorname{ch}^{\prime} \cos x
\end{aligned}
$$

ساختار الكترونى اتمهها

$$
\begin{equation*}
\lambda y=c \tag{1-9}
\end{equation*}
$$

و به اين ترتيب،

$$
\begin{equation*}
v=\frac{c}{\lambda} \tag{Y-8}
\end{equation*}
$$

$$
1 \mathrm{~Hz}=1 / \mathrm{s}
$$

 نامشاذلارى شده است.
طليف الموالج الكترو مغناطيسي در شكا

1. Infrared waves

2. Intensity

据

4. Heinrich Hertz

. $10^{-1 *} \mathrm{~m} \cdot(\AA)$ ($)$ o

 .

$$
\hat{A}=10^{-1} \cdot \mathrm{~m}=10^{-1} \mathrm{~cm}
$$

$\backslash \mathrm{nm}=10^{-4} \mathrm{mt}=10^{-v} \mathrm{~cm}$

 خواح شـيميايى آن اتم استا
 الكترومفغناهِيسى بهدست آملده است. در نتيجه ابتّا با به ماميّت و و نوع اين

 زيو أستفاده میشود.

 a هوجشانان، با سرعت بكسان،

 ثانيه (سرعت نرو) است:

(الفـ) معادلّ 9 -

$$
? \mathrm{~m}=700 . \mathrm{nm} \frac{10^{-9} \mathrm{~m}}{1 \mathrm{~nm}}=7.00 \times 10^{-7} \mathrm{~m}
$$

$$
\begin{align*}
v & =\frac{c}{\lambda} \tag{r-9}\\
& =\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{7.00 \times 10^{-7} \mathrm{~m}}=4.29 \times 10^{14} / \mathrm{s}
\end{align*}
$$

$$
v=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4.00 \times 10^{-7} \mathrm{~m}}=7.50 \times 10^{14} / \mathrm{s}
$$

 موج بلندتر از بك نقطه ميكذرند.

1. Mas Plank

1-9
فركانس (الفـ) بكا لونور قرمز باطول هوج طول موج Foonm تمقدر است؟

 مثالا، بنغثن با آبى، آبى با سبز و غيرهـ

 میتو انْ از معادله زير به دست آورد: $v=\frac{c}{\lambda}=\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right) \quad n=3,4,5 \ldots(\uparrow-9)$
 إين رابطه، در

نظريأ بوهر

نكتههاى زير بود.

2. Bunsen flame

1. Albert Einstcin

$$
\begin{equation*}
E=h v \tag{r-9}
\end{equation*}
$$

مثال 9 -
 (ب) نور بنقش با فركانس

ل
 ثابت تالانكى
(الف) $E=h \nu$

$$
\begin{align*}
& =\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(4.29 \times 10^{14} / \mathrm{s}\right) \tag{r-9}\\
& =2.84 \times 10^{-19} \mathrm{~J}
\end{align*}
$$

(ب) $E=\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(7.50 \times 10^{14 / \mathrm{s})}\right.$

$$
=4.97 \times 10^{-19} \mathrm{~J}
$$

 شكل 9 - T را بيبنيد) استـ.

وت Tr - Y

 ناجيه برئى

$$
\begin{equation*}
v=\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{n_{\mathrm{i}}^{2}}-\frac{1}{n_{0}^{2}}\right) \tag{1-9}
\end{equation*}
$$

 بالاتر به تراز
$\mathrm{v}=\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{2^{2}}-\frac{1}{n_{0}^{2}}\right) \quad n=3,4,5 \ldots$

 طيفى در شـكل تراز

 n $n=r$

r-9 مثال res
 n $n=r$

ل

1. Ground state
2. Excited state
3. Lyman series
4. Paschen series

$$
, L ; G \tilde{\sim}_{0} 0 \text {, is }
$$

 P P

 قرار دارند.

$E_{\mathrm{j}_{10}}=-\frac{\left(2.179 \times 10^{-18} \mathrm{~J}\right)}{n^{2}} \quad n=1,2,3 \ldots$
 يكى لايه درونى (n) را با

 بنابراين،

$$
\begin{align*}
& h v=E_{0}-E_{\mathrm{i}} \\
& h v=\frac{\left(-2.179 \times 10^{-18} \mathrm{~J}\right)}{n_{\mathrm{o}}^{2}}-\frac{\left(-2.179 \times 10^{-18} \mathrm{~J}\right)}{n_{\mathrm{i}}^{2}} \\
& h v=\left(2.179 \times 1 E_{\mathrm{o}}^{-18} \mathrm{~J}\right)\left(\frac{1}{n_{\mathrm{i}}^{2}}-\frac{1}{n_{0}^{2}}\right)
\end{align*}
$$

$$
h=9,9 \times 9 \times 10^{-r t ~ J . s ~} 0
$$

$$
v=\left(\frac{2.179 \times 10^{-18} \mathrm{~J}}{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}\right)\left(\frac{1}{n_{\mathrm{i}}^{2}}-\frac{1}{n_{\mathrm{o}}^{2}}\right)
$$

 جا جاول خو

 (Ar ،Ne ،He ، H ((Rn g ، Xe ، Kr

 S(Br g , Cl ، Cl)

 سيستم تناوبى بوده، بستگى دارد ارد.

قائون تناوبى موزلى كار هنرى موزلم "

 3 3 (3 (
 ريافت S

الز

[^4]\[

$$
\begin{align*}
v & =\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{0}^{2}}\right) \\
& =\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right) \\
& =\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{4}-\frac{1}{9}\right) \\
& =0.4568 \times 10^{15} / \mathrm{s}=4.568 \times 10^{14} / \mathrm{s}
\end{align*}
$$
\]

طول موج وا مىتوان از مادللّ 9 ـ بَ به دست آورد. $\lambda=\frac{c}{v}$

$$
\begin{align*}
& =\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4.568 \times 10^{14} / \mathrm{s}} \tag{r-4}\\
& =6.563 \times 10^{-7} \mathrm{~m}=656.3 \mathrm{~nm}
\end{align*}
$$

 $? \mathrm{~nm}=6.563 \times 10^{-7} \mathrm{~m}\left(\frac{1 \mathrm{~nm}}{10^{-9} \mathrm{~m}}\right)=6.563 \times 10^{2} \mathrm{~nm}$ $=656.3 \mathrm{~nm}$

 شـ (Te،Se ،S!I ، Br ، Cl
 عنصر ديگر اسـتـ)

دوران جلا

	0,										
-											b (0)
1	$\begin{aligned} & \mathrm{H} \\ & \text { t. } \end{aligned}$										$\begin{aligned} & \mathrm{He} \\ & 4.0 \\ & \hline \end{aligned}$
2	$\frac{4}{69}$	$\begin{aligned} & \mathrm{Be} \\ & 90 \end{aligned}$	$\begin{array}{r} B \\ +08 \end{array}$	$\begin{array}{r\|} \hline c \\ 12.0 \end{array}$	$\begin{array}{r} \mathrm{N} \\ +4.0 \end{array}$	$\begin{array}{r} 0 \\ 160 \end{array}$	$\begin{array}{r} F \\ 190 \end{array}$				$\begin{aligned} & \mathrm{Ne} \\ & 20.2 \end{aligned}$
3	$\begin{aligned} & \mathrm{Na} \\ & 230 \end{aligned}$	$\begin{aligned} & \mathrm{Mg} \\ & 24.3 \end{aligned}$	$\begin{array}{r} \text { Al } \\ 27.0 \end{array}$	$\begin{array}{r} 8 \\ 28.1 \end{array}$	$\begin{array}{r} p \\ 31.0 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{S} \\ 32.1 \end{array}$	$\begin{array}{r} 61 \\ 35.5 \end{array}$				$\begin{array}{\|l\|} \hline \text { Ar } \\ 38.9 \\ \hline \end{array}$
	$\begin{aligned} & k \\ & 39.1 \end{aligned}$	$\begin{array}{\|l\|} \mathrm{Ca} \\ 40.1 \end{array}$	$\begin{array}{\|l\|} \hline S C \\ 45.0 \end{array}$	$\int_{47.9}^{T i}$	$\begin{aligned} & V \\ & 509 \end{aligned}$	$\begin{aligned} & \mathrm{er} \\ & 52.0 \end{aligned}$	$\begin{aligned} & \mathrm{Mn} \\ & 54.9 \end{aligned}$	$\begin{aligned} & \mathrm{Fe} \\ & 55.8 \end{aligned}$	$\begin{aligned} & 60 \\ & 58.9 \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & 58.7 \end{aligned}$	
4	$\begin{array}{r} \mathrm{Cu} \\ 635 \end{array}$	$\begin{array}{r} 2 n \\ 65.4 \end{array}$	$\begin{array}{r} \mathrm{Ga} \\ 69.7 \end{array}$	$\begin{array}{r} \mathrm{Ge} \\ 72.6 \\ \hline \end{array}$	$\begin{array}{r} \text { As } \\ 74.9 \\ \hline \end{array}$	$\begin{array}{r} 5 \mathrm{e} \\ 79.0 \end{array}$	$\begin{array}{r} \mathrm{Br} \\ 79.9 \\ \hline \end{array}$				$\begin{array}{\|l\|} \hline \mathrm{Kr}_{r} \\ 83.8 \\ \hline \end{array}$
	$\begin{aligned} & 80 \\ & 85.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Sr} \\ & 876 \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & 889 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{Zr} \\ 91.2 \end{array}$	$\begin{array}{\|l\|l} \mathrm{Nb} \\ 92.9 \\ \hline \end{array}$	$\begin{aligned} & \text { Mo } \\ & 959 \end{aligned}$	Te	$\begin{aligned} & \mathrm{Ru} \\ & 101.1 \end{aligned}$	$\begin{aligned} & \text { Fh } \\ & 1029 \end{aligned}$	$\begin{aligned} & \mathrm{Pd} \\ & 100.4 \end{aligned}$	
5	$\begin{array}{r} \mathrm{Ag} \\ 1079 \end{array}$	$\begin{array}{r} \mathrm{Cd} \\ 112.4 \end{array}$	$\begin{array}{r} \text { If } \\ 114.8 \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ 118.7 \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ 121.8 \end{array}$	$\begin{array}{r} \mathrm{Te} \\ 127.8 \end{array}$	126.9				Xe 131.3
	$\begin{aligned} & \mathrm{Cs} \\ & 1329 \end{aligned}$	$\begin{aligned} & \mathrm{Ba} \\ & 137.3 \end{aligned}$	$\begin{aligned} & \text { La* } \\ & 138.9 \end{aligned}$	$\begin{aligned} & \mathrm{Hif} \\ & 178.5 \end{aligned}$	Ta 1809	$\begin{aligned} & W \\ & 1839 \end{aligned}$	$\begin{aligned} & R e \\ & 186.2 \end{aligned}$	$\begin{aligned} & \text { Os } \\ & 1902 \end{aligned}$	$\begin{aligned} & \text { It } \\ & 1922 \end{aligned}$	$\begin{aligned} & P_{1} \\ & 195,1 \end{aligned}$	
6	$\begin{array}{r} \mathrm{Au} \\ 1970 \end{array}$	$\begin{array}{r} \mathrm{Hg} \\ 200 \cdot 6 \end{array}$	$\begin{array}{r} \pi \\ 204.4 \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ 207.2 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ 209.0 \end{array}$	Po	At				An
7	Er	Pa	$A c^{* *}$								

*	$\begin{aligned} & \mathrm{Ce} \\ & 140.1 \end{aligned}$	Pr 140.9	Nd 144.2	Pm	$\begin{aligned} & \mathrm{Sm} \\ & 150.4 \end{aligned}$	$\begin{aligned} & \mathrm{Eu} \\ & 152.0 \end{aligned}$	$\begin{aligned} & \mathrm{Gd} \\ & 157.3 \end{aligned}$	$\begin{aligned} & \text { Tb } \\ & 158.9 \end{aligned}$	$\begin{aligned} & \text { Dy } \\ & 162.5 \end{aligned}$	$\begin{aligned} & \mathrm{Ho} \\ & 64.9 \end{aligned}$	Er 167.3	$\operatorname{Tm}_{168.9}$	$\begin{aligned} & \text { Yb } \\ & 173.0 \end{aligned}$	$\begin{aligned} & \text { Lu } \\ & 175.0 \end{aligned}$
\cdots	$\begin{aligned} & \text { Th } \\ & 2320 \end{aligned}$	Pa	$\begin{aligned} & U \\ & 238.0 \end{aligned}$	Np	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	No	Lr

$19 . \mathrm{VEINHF}$ ،

X
setsectit

شيهميا يـ هشابي هـيتنا.

 نشان داده شده است.
 اين كتاب ابست.

 (

N.70

 كا

 بار بيش

شـ
(الف) در بازى بيسبال، سرعت توب

居 $19 \times 10^{\circ} \mathrm{m} / \mathrm{s}$

$$
h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=6.63 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
$$

(ل) $\lambda=\frac{h}{m v}$
ح

$$
\begin{align*}
& =\frac{6.63 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{(0.146 \mathrm{~kg})(44.1 \mathrm{~m} / \mathrm{s})} \tag{1r-9}\\
& =1.03 \times 10^{-34} \mathrm{~m}
\end{align*}
$$

(ب) $\lambda=\frac{h}{m v}$

$$
\begin{align*}
& =\frac{6.63 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)} \tag{1r-9}\\
& =3.32 \times 10^{-10} \mathrm{~m}=0.332 \mathrm{~nm}
\end{align*}
$$

 ناحيءُ اششعه X طيف الكتبرومغناطيسي قرار دارد.

اصل ملدم فطعيت هايزيز نبرتي

1. Louis de Broglie
2. Momentum
3. Clinton Davisson
4. Lester Germer

سهرلت كاربرد آن الكُر بستگى دارد.

رابطهُ دوبروى

$$
\begin{equation*}
E=h \nu \tag{r-9}
\end{equation*}
$$

$$
\begin{equation*}
E=h^{c} \frac{c}{\lambda} \tag{4-9}
\end{equation*}
$$

با الستفاده زل معادلٌ اينشتين،

$$
\begin{equation*}
m c^{2}=h \frac{c}{\lambda} \tag{10-9}
\end{equation*}
$$

با حل كردن اين معادله برايى λ ، طول مورج:

$$
\begin{equation*}
\lambda=\frac{h}{m c} \tag{11-9}
\end{equation*}
$$

براساس نظريةٌ دوبروى، معاللّة مثـابابهى را براى طول مبرج الكترون نيز میتوان به دست داد:

$$
\begin{equation*}
\lambda=\frac{h}{m v} \tag{1r-9}
\end{equation*}
$$

كه در آن m جرم الكترون و و

$$
\begin{equation*}
\Delta x \Delta m v \geq \frac{h}{4 \pi} \tag{15-9}
\end{equation*}
$$

$$
\begin{equation*}
\Delta v \geq \frac{h}{4 \pi m \Delta x} \tag{14-9}
\end{equation*}
$$

(الف)

$$
\begin{aligned}
\Delta v & \geq \frac{5.28 \times 10^{-35} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{(0.146 \mathrm{~kg})\left(1.00 \times 10^{-11} \mathrm{~m}\right)} \\
& \geq 3.62 \times 10^{-23} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

است كه جابهجاييا

$$
\text { (ب) } \begin{aligned}
\Delta v & \geq \frac{5.28 \times 10^{-35} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.00 \times 10^{-11} \mathrm{~m}\right)} \\
& \geq 5.80 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

 مرجى آن بياذ كرد.

معادلهُ شروديتُر

 حركت سريع آّن باصورت ابرى از بار فرض میشود. جـكالى اين ابر در
 كشف شـد

 .

 الكترون سبب تشـديد أندازه حركت آن میشيود.

بزركتر از ثابت ڤلانكا، h، تقسبم بر

مثال 9-9
 (ب) بكى اللكترون (جرم،
 ه1\% شعاع يكى اتم معهولى است) تعيين شده باشذ.

 شختصـات ترار دارد).

 حالت 1 = 1 اتم هيدرورّن، در شكل 9 - 1 ا 1 نشانان داده شده است.

در مكانيك موجي (يا مكانيك كو انتومى) ترزيع الكترون در اتمى كي

 الكترون هستند.
علد كوانتومى اهلى، n، تقريباً بـ nبيان شـده تون الوسط بوهر مريوط

 زياد اسست. مثّار n، يك علدد صشتع مئبت الست:

$$
n=1,2,3 \ldots
$$

 در آن لا يه باللاتر است

 n= n

[^5]

(ب)
(all)

هبيردزن

بعضى نواحى بيشتر است. احتمال بيدا كردن الكترون در يكى نـاحبه

 براى الكتتورنى در حالت

 (ز هسته، باسوري صفر ميل مى كند. منحنى (ب)، منحنى توزيع شعاعى است. احتمال كلّ براي يـافتن

 متحدالمركز در اطراف هسته قراردارند. احتمال يِيلدا كـردن الكتـترون در

$$
\begin{aligned}
& \Delta \dot{L}=s, \quad p, \quad d, \quad f, \quad g \quad \cdots \\
& l=0, \quad 1, \quad 2, \quad 3,4 \ldots \\
& \text { La dun }
\end{aligned}
$$

 الوربيتال،

$$
m_{t}=+l,+(l-1) \ldots 0 \ldots-(l-1),-l
$$

درنتيجه، براى براى . d)

 جدول 9 - بَ آمـهـه است.

 س.

 يكى در نزدبكى هسته و ديگرى در فاصلةُ دورتو. به اين تر ترتيب در ابر

وبو2

$$
\begin{equation*}
I=0,1,2,3 \ldots(n-1) \tag{10-9}
\end{equation*}
$$

انىر برايى

 براي هر يكى أز مقادير lاز يك حرفـ استفاده هى مشود:

$$
\begin{array}{rllllllll}
l & =0, & 1, & 2, & 3, & 4 & 5 & \ldots \\
ن ـ ن ش ا ن ه & =s, & p, & d, & f, & g, & h & \ldots
\end{array}
$$

 الكترونهاي لائُ
 يكى لايهُ فرعى از معادلّ زير بهدست مى آيد.
"

برايى مشالل در هر لايأ فرعى
 در هر لاينّ فرعى بـبيان ديخر،

 مغناطيسى أسيبن،

$$
m_{s}=+\frac{1}{r} t-\frac{1}{r}
$$

دو الكترون با مبادير متفاوت

1. Zeeman eflee
2. Otto Stem
3. Wather Gerlach

 (Sj) ب

2_{2},

2p.

4.

 كروي هستينل.

． 2 ．${ }^{2} m_{m_{s}}$－＊

اصل طرد هاوالى

 so

 （ ＂توتوان مشخصر كرد．

 Y Y ．$n=4$

Ag برتو اتمهـياى

أنثكارساز

$$
\text { شـكل 9 ـ } 10 \text { آزما }
$$

 شr و و据

 بر＊
 داراى الاكتمون جفن ت نشامه با ． تحْ
病隹－Y

شكل 9 ـ

 الكترونها دارإى مالامت يكسان باشند.

الكترونى

 Ne g، F،O ،N، ، أوربيتال
 - لايه فوعى d

[^6]
نشان داده شله الست. در نمودارهاى اوربيتالى هر اوربيتال با يكى خخط
 + $+\frac{1}{Y}$

 (mpo ,

 2 أوربيتال

 الكترون جنجم در الوربيتال rp جالى دالرد. لاية فرعى
 اوربيتال
 يك يبيكان در الوربيتالهاي وp . مشخص نشد.اند. نمايش الكتروني اتم

		Ster	ا	rp		示
${ }_{1} \mathrm{H}$	\uparrow	-		-	\square	$1 s^{1}$
${ }_{+} \mathrm{He}$	$1+$	-				$1 s^{\text {r }}$
${ }_{4} \mathrm{Li}$	$\uparrow \downarrow$	1				$1 s^{\text {r }}$ Y s^{\prime} !
$*^{\mathrm{Be}}$	$\uparrow \downarrow$	$\uparrow \downarrow$				$1 s^{T} Y s^{\text {r }}$
0^{B}	$\uparrow \downarrow$	$\uparrow \downarrow$	1		-	
${ }_{8} \mathrm{C}$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow		$1 s^{\text {r r r r rer repr }}$
V^{N}	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	1	\uparrow	
x_{0}	$\uparrow \downarrow$	$\downarrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	$1 s^{\text {r }}$ T r $s^{\text {r r r r r }}$ Y $p^{\text {r }}$
${ }_{4}{ }^{\text {F }}$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	1	
1. Ne	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow+$	$1 s^{r} r s^{\text {r }}$ r $p^{\text {r }}$

 بجز هليم كي دارايى دو الكترون اسنـ،

 روش آفبا' مشهور است

(1.1居

 3. Differentiating electron

 مغناطيسى تأييد شده استـ.

 است و در بسياري از موارود آثر اخير ناهيزيز استيت.

 يو شاندهم میشود

 شباهن بين بيكربندى عناصر يكى كروه تو جه كنيد. مثلاكا تمام عناصر

جلول 9 ـ 9 (ادامهه)

رnic	z	1s	2 is	20	3 s	$3 p$	3 d	4 s	$4 p$	$4 d$	$4 i$	58	5ρ	$5 d$	$5 t$	65	$6 p$	$6 d$	75
Es	55	2	2	6	2	6	10	2	6	10		2	6			1			
Ba	56	2	2	6	2	6	10	2	6	10		2	6			2			
La	57	2	2	6	2	6	10	2	6	10		2.	6	1		2			
Ce	58	2	2	6	2	6	10	2	6	10	2	2	6			2			
Pr	59	2	2	8	2	6	10	2	6	10	3	2	6			2			
Nd	60	2	2	6	2	6	10	2	6	10	4	2	6			2			
Pm	51.	2	2	6	2	6	10	2	6	10	5	2	6			2			
Sm	82	2	2	6	2	6	10	2	6	10	6	2	6			2			
Eu	63	2	2	6	2	6	10	2	6	10	7	2	6			2			
Gd	64	2	2	6	2	6	10	2	6	10	7	2	6	1		2			
Tb	65	2	2	6	2	6	10	2	6	10	9	2	6			2			
Dy	66	2	2	6	2	6	10	2	6	10	10	2	6			2			
Ho	67	2	2	6	2	6	10	2	6	10	11	2	6			2			
Er	68	2	2	6	2	6	10	2	6	10	12	2	6			2			
Tm	69	2	2	6	2	6	10	2	6	10	13	2	6			2			
Yb	70	2	2	6	2	6	10	2	6	10	14	2	6			2			
Lu	71	2	2	6	2	6	10	2	6	10	14	2	8	1		2			
Hf	72	2	2	6	2	6	10	2	6	10	14	2	6	2		2			
Ta	73	2	2	6	2	6	10	2	6	10	14	2	6	3		2			
W	74	2	2	6	2	6	10	2	6	10	14	2		4					
Re	75	2	2	6	2	E	10	2	6	10	14	2	6	5		2			
Os	76	2	2	6	2	6	10	2	6	10	14	2	6	6		2			
Ir	77	2	2	6	2	6	10	2	6	10	14	2	6	7		2			
Pt	78	2	2	6	2	6	10	2	6	10	14	2	6	9		1			
Au	79	2	2	6	2	6	10	2	6	10	14	2	6	10		1			
Hg	80	2	2	6	2	E	10	2	6	10	14	2	6	10		2			
TI	81	2	2	6	2	6	10	2	6	10	14	2	6	10		2	1		
Pb	82	2	2	6	2	6	10	2	6	10	14	2	6	10		2	2		
Bi	83	2	2	6	2	6	10	2	6	10	14	2	6	10		2	3		
Po	84	2	2	6	2	6	10	2	6	10	14	2	6	10		2	4		
At	85	2	2	6	2	6	10	2	6	10	14	2	6	10		2	5		
Rn	86	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6		
Fr		2	2	6				2			14		6	10		2	6		1
Ra	88	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6		2
Ac	89	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6	1	2
Th	90	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6	2	2
Pa	91	2	2	6	2	6	10	2	6	10	14	2	6	10	2	2	6	1	2
u	92	2	2	6	2	6	10	2	6	10	14	2	6	10	3	2	6	1	2
Np	93	2	2	6	2	6	10	2	6	10	14	2	6	10	4		6	1	2
Pu	94	2	2	6	2	6	10	2	6	10	14	2	6	10	6	2	6		2
Am	95	2	2	6	2	6	10	2	6	10	14	2	6	10	7	2	6		2
Cm	96	2	2	6	2	6	10	2	6	10	14	2	6	10	7	2	6	1	2
Bk	97	2	2	6	2	6	10	2	6	10	14	2	6	10	8	2	6	1	2
Cf	98	2	2	6	2	6	10	2	6	10	14	2	6	10	10	2	6		2
Es	99	2	2	6	2	6	10	2	6	10	14	2	6	10	11	2	6		2
Fm	100	2	2	6	2	6	10	2	6	10	14	2	6	10	12	2	6		2
Md	101	2	2	6	2	6	10	2	6	10	14	2	6	10	13	2	6		2
No	102	2	2	6	2	6	10	2	6	10	14	2	6	10	14	2	6		2
Lr	103	2	2	6	2	6	10	2	6	10	14	2	6	10	14	2	6	1	2

 به دست أورد. تو جه داشته باستيد كه در هر لايه فرعي

 .
 تناوبى (مانتل جلو لـ داخل جل جلد كتاب) استفاده كنيلد.

 تناوب دومه با ليتيم (IS $1 S^{\top}$) و و بريليم (
 تناوب , ${ }^{\text {r }}$
 الگگو تناو
 عنصر وبلوك

 صـورت بيكريندي x
 ميلان +ی شود (روى، لايه فرعى .
 ($n=Y$ (H) قبل از بيرونى توين لايه (

 يعنى
S S

شكل 9 ـ 1 ا ترتيب هركردن الوربيتالهاى اتمى به روش أثبا

 بنجچگانه

 در لائ

بيشترين انوزيى، و اتوثى اوردبيتال

عنامر رالشطهد

 جدول تناربـي

مثالـ 9

j

 روش كار رابا استفاده از يكا جدول تناوبي بردسى كنيّن:

$$
\begin{aligned}
& \text { (ما را به He (} \\
& \text { تناوباول: }
\end{aligned}
$$

> r تناوب
> ((
> تناوب سوم:
(0) (0ا

 $\Delta s^{r}+d^{10} \Delta p^{r} \quad$ تناوب با تغيير دادن آرايش عبارت بمدست آهدلم، ندايش الكترونى با تـرتيب املى بهدست هی آيل:
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{2}$

V-9 مثال

را بنو يسيل.

تناوب اول: rs rtpr تُاوب تناوب سوم: ب $s^{r} r d^{10}$ \& $p^{q} \quad$:تاوب $\Delta \dot{s}^{r}+d^{10} \Delta p^{\varepsilon} \quad$ ت G $s^{r}+f^{*} \quad$ تناوب ششـم

باتغييرآرايشا اين "بارتها، بمنمايشن الكترونى عنصرنتوديميميمىوسيم:
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{4} 5 s^{2} 5 p^{6} 6 s^{2}$
 هشكلى دارد. نماينش هدكن الست جنين تصور شود كي نمايش الكترونى

 نمايش الكتروني
 (براى
($\left.\Delta s=r \lambda, \ldots \varphi s^{\gamma} \varphi p^{\varphi} \Delta s^{\gamma}\right)$ على رغم خاكى بودن الوربيتالنهاي

 ($Z=\psi q \ldots$... $f s^{r}$ \& p^{γ} \& $\left.d^{\prime} \Delta s^{r}\right)$ ($\left.Z=+\wedge, \ldots \& s^{\psi}+p^{g}+d^{l \cdot} \Delta s^{\gamma}\right)$

 ... استت. در با ايان اين تناوب، لايه فرعى

 (Z = QN
 , Ce \quad, \quad, \ldots \& d^{10} \& $f^{\prime} \Delta s^{\top} \Delta p^{\varphi} \Delta d^{\prime}$ \& s^{\top}

 (Z = VI)
 عنصر

 تناوب هفتّم كامل نيست و و بسيارى از عناصر ساخته شا شلهه بهو سيله

 هي شود و بالاخره در عناصر واسططة

 (9 (9)
 و براساس جلدرل تتاوبى الكترونهايى اضافه شلده را در اوربيتالها قرار
 داده شلده است.

تبيين كرد.

آرايش
 دست/آملده با روش تج

 ($Z=9 \psi$) براى عناصر والسعدت داخلى . $r f^{\lambda} \Delta s^{r} \Delta p^{\gamma} \Delta d^{\prime} 9 s^{\gamma} 0$,

 ($5(Z=V 9)$

عناصر را مى تو ان بر پايةٌ آرايش الكترونى آنها طبتهبندى كرد:

A-9 J

را بنويسِيد.
$ح$

$1 s^{r}$	تّاوب اولن.
Y $S^{\text {r }}$ Y $p^{\text {r }}$	تناوبدوم؛
$r s^{T} r p^{\gamma}$	تناوبسزم:
	تّاوب
$\Delta s^{\gamma}+d^{\prime \prime} \Delta p^{\varphi}$	
Qs $s^{T}+f^{1 T} \Delta d^{*}$	

 $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{4} 6 s^{2}$

 , و بيكربندى يون

 هسته و فقّط Y Y الكترو

 الوربيتاله ها نوشت.

بيكرينـا

الكتر ن

 iica $1 s^{Y} \gamma s^{Y} r p^{\varphi} r s^{Y} r p^{\zeta}+d^{\varphi}+s^{Y}$
+

 تركيبات پارامغناطيس شديداً رنُخين تو ليّل مىكنـند.

 میروند. به استتُناى هليم (كه آرايش داراى آرايشث بسيار چايلدار Y Y F

 الكترونهاى ظرْيتى بستگى دارد..
\%

كوانترمى ششينصر میشود.

㢄

 (($-\frac{1}{Y}$

 ساختار الكترونى أنها بستگى دارد.

 .

رئّه خرود استـ.

 h h/mv

سرعت) است.

كو انتومق مرد محخالف در خود جالي دهــ Paramagnetic substance
 جا

Principal quantum number (n)

 SQuantum

Representative element

 Spectrum

 .
 سرعت نور (بخشي 9- Speed of light, c
 Subshell

 .

 Uncertainty principle
 فيرمهكن استا

 Wave function, ψ

 Wavelength, λ

روش آفبا(بحشُ Aufbau method

 Diamagnetic substance
 جفت شدهاند.
Electromagnetic radiation
 باين هوج با كوانتوم قابل تفـيـير است

 يكتـان باتشند.

 أَن مَاتخثـد.

 دائته باتُنـنـ.
(Frequency, v
 Ground state
 را دارند.

 اضافـه مئسود. Magnetic orbital quantum number, m_{l}

 لايأ ذرعى است.
Magnetic spin quantum number, m_{s}

داراى أسيبين هخالف (

 فاهـله （ 9
 8 9

 در لائة 0. IV－ 9

از لا لوan路 9

 بطرح بالانر به لائ

 ．
 Se－mer

 سریها كامهام است؟؟

 با

 X X X X － 9

 كتاب أمده انست

 （ 4

 بور （بـ） 9
 سبز با نركانس
 （J）（ل） 9
 فركانس رنم آن بنز

 ＊ $0 . \mathrm{Hm}$ نانوت ابَن كار را النجهام ميدهـ؟ A－F＂

 SLas年番

 اسر

 طول مـوج

خارجششه هحقلدز انست؟

 برابر با

آرايش الكترونى
病

和 9α به مررت زير است را مشُخص كنيا

 \＆
 $\Delta r^{T e}(\mathrm{~J}): \mathrm{V}_{0} \mathrm{Yb}(\infty)$ （ 90 － 9
 $\cdot{ }^{-19}{ }^{\mathrm{Au}}(\mathrm{g})$

 Or－ 9
 رو ـ 9

 （ Δ ）
（ OH－ 9

（ $\%$ ـ

（ 9

 نيبه بر هستند را رــــيـص كنيد．

مسانُل طبقهبيثلدى نشـده

 جقثدر است

ميشود جقلـر است
 تبعيت

اعلداد كو انتوهمى
 با سرعت （ 9 （

 ¢

 ． 9 ．

 （TY－F تُطميت سرعت بكى نوترون（جرمه و،

 تبيين كنيد．

 استفاده كنيلد．

 الستفاده كنيلد．居

 $, l=l, n=r(g): m_{l}=-r, l=r, n=\psi(\omega): m_{\mathrm{P}}=+\mu, l=Y, n=Y(\nu)$
$l=1 \quad n=r 0!m_{2}=0$

 $!m_{l}=+1, l=\cdots, n=r(\cdot)!l=\bullet, n=1(\Delta)!m_{l}=0, l=r, n=r(\Omega)$ $m_{l}=-1, l=1, n=Y$（j）
隹 الكترين دارای عدد كوانتومى ال－有
 الكترون دارايى عدد كوانتومى Y＝l الست

جقدر است؟ اين عنسر جِبست؟

 وجود لايه فرعى بر

 (90 9

 4. 9

 X بك عنصر زل طرين فرمول (Z-b) در أن a تغريبأ برابر بألط

خواص اتمم و يبوند يونى

 قابل ذكر هستغنـ:

 جا

 اصلى وجود دارد:

 در يكى ساختار بلورى نتا مه ميدارد.

 هرك از

 بستگ"

 اختصاص بافته الست.

Lancolbjout 1-Y

热

 (IV9 pm)

1 ـ اكُر سيستمى انرزي جأنب كنلا علاهت مقدار

 .

$$
\mathrm{Na}(\mathrm{~g}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})+e^{-} \quad \Delta H_{1 \mathrm{st} \text { ion en }}=+496 \mathrm{~kJ}
$$

انترزى يونش براي هو يكى از الكـترونها بـر هسب الكترون ولت
(kJ/mol) بـراى يكى هـول (eV/atom)

در نتيجه تعميمهاى زير را هيتو ان بيان كرد:

1 ـ ـبه طور كلى انز

 تشكيل يون مشبت دارند. اتم نافلزات چنين رفتار نـمـى ركنتن. در نـتيجه

1. First ionization energy

 در اثر عبور از اختلاف

$$
1 \mathrm{eV} / \mathrm{Hil}=1,9 . \mathrm{YY} \times 10^{-19} \mathrm{~J} / \mathrm{c} /=49, * \wedge V \mathrm{~kJ} / \mathrm{mol}
$$

$$
\mathrm{A}(\mathrm{~g}) \longrightarrow \mathrm{A}^{+}(\mathrm{g})+\mathrm{e}^{-}
$$

نماد (A(g)، بيانگگ اتم كازی هر عنصر است.
 (بخشث (F-Q) را مورد توجه قرار دهيمز:

16/mol					نلز
0,	Pr	psor	إو		
+0,0\% 1	+9,915	+4.jast	+49,	IA	Na
+1.j0to	+v,yri	+1, Ho $^{\circ}$	+VTA	UA	Mg
+ilaga	+r,yefe	+1) SN_{19}	+ovv	ma	${ }^{\text {A }}$

 به وجود میى آيند.

 لايه ظرفينى قرارِ دارد.

 كاهش مكـيابيا.

 . $1000 \mathrm{~kJ} / \mathrm{mol}$ برخى از ويزُّى ماى منحنى شكل
 (1 آرايش الككنرونى

 K بيرونى ترين لايهاند (ns"

 عنصر بمدى آسانانت است

$$
\mathrm{A}^{+}(\mathrm{g}) \longrightarrow \mathrm{A}^{2+}(\mathrm{g})+e^{-}
$$

$$
\mathrm{Na}^{+}(\mathrm{g}) \longrightarrow \mathrm{Na}^{2+}(\mathrm{g})+e^{-} \quad \Delta H_{2 \text { nd ion an }}=+4,563 \mathrm{~kJ}
$$

بايد انترزى صرف شود.

 در مرود عناصر كروه VIIA الكترونخواهي فلوئر

 شُده است

$$
e^{-}+\mathrm{O}^{-}(\mathrm{g}) \longrightarrow \mathrm{O}^{2-}(\mathrm{g}) \quad \Delta H_{2 \text { nd elec af }}=+845 \mathrm{~kJ}
$$

 الكترونخْو امى، داراي علامت مئبتانداند.

 انزئى آزاد شـلـه در اولين الكترون خوراهيى،

$$
\mathrm{c}^{-}+\mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{O}^{-}(\mathrm{g}) \quad \Delta H_{\text {Ist elec at }}=-141 \mathrm{~kJ}
$$

كستر از اتزذي مورد نياز در دومين الكترونخواهى استا،

1. First electron affinity

$$
e^{-}+\mathrm{A}(\mathrm{~g}) \longrightarrow \mathrm{A}^{-}(\mathrm{g})
$$

 .

$$
e^{-}+\mathrm{F}(\mathrm{~g}) \longrightarrow \mathrm{F}^{-}(\mathrm{g}) \quad \Delta H_{\text {1s elec af }}=-328 \mathrm{~kJ}
$$

$$
e^{-}+\mathrm{Ne}(\mathrm{~g}) \longrightarrow \mathrm{Ne}^{-}(\mathrm{g}) \quad \Delta H_{1 \mathrm{st} \mathrm{zi} e \mathrm{cat}}=+29 \mathrm{~kJ}
$$

隹 كُ

艮

بر

$$
\begin{array}{ll}
0 & s \\
+704 & +332
\end{array}
$$

"

شكل V - \& بـاختار بلورى سـديم كلريد.

 يك الكتبرون از دست مى دهلد؛ اتم كلر يكى الككترون میئيرد:

$$
\mathrm{Na} \cdot+\cdot \ddot{\mathrm{C}}: \longrightarrow \mathrm{Na}^{+}+: \ddot{\mathrm{C}} \mathrm{l}^{-}
$$

 است و ييوند يونى نام دارد.

$$
\begin{aligned}
\mathrm{Na}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}\right) & \longrightarrow \mathrm{Na}^{+}\left(1 s^{2} 2 s^{2} 2 p^{6}\right)+e^{-} \\
e^{-}+\mathrm{Cl}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}\right) & \longrightarrow \mathrm{Cl}^{-}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right)
\end{aligned}
$$

$e^{4}+\mathrm{O}^{-}(\mathrm{g}) \longrightarrow \mathrm{O}^{2-}(\mathrm{g}) \quad \Delta H_{2 \text { nd efec at }}=+845 \mathrm{~kJ}$ در نتيجه فرايند كلى، گُرماگيز است:

$$
2 e^{-}+\mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{O}^{2-}(\mathrm{g}) \quad \Delta H=+704 \mathrm{~kJ}
$$

" - Y
در بخشَهاى ب

الكتريكى دارد.

الف ـكاتيون، داراى بار مشبت است (زيرا يكى يا حتند الكترون/از
دست دادهاست).

است).

$$
\begin{aligned}
& \text { Y - يون يكا اتمى از يك اتم تشمكيل شده است. }
\end{aligned}
$$

؟ يونهالى تمند اتمى مدكن است كاتيون (برأى مثال آتيون (مثلاً

است (مثال ا ـ ا را بابينيد).
تركيبات حامل از عناصر نمونه اغلب با اسستفاده ازز نـماد عـناصر

 الـكترون نهاي ظا ظرفيتي الست.

يكى اتم Al (فلزى از كُروه IIIA) با الز دستدادن سه الكترون آَرايش

: Em / m-VA kJ/mol

$$
\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{NaCl}(\mathrm{~s}) \quad \Delta H=-788 \mathrm{~kJ}
$$

$$
\mathrm{NaCl}(\mathrm{~s}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \quad \Delta H=+788 \mathrm{~kJ}
$$

 ,
$\mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NaCl}(\mathrm{s}) \quad \Delta H_{f}^{\circ}=-411 \mathrm{~kJ} \quad(1-\mathrm{v})$

1. Lattice energy
2. Max Born
3. Fritz Haber
4. Born - Haber cycle

مى دهند يا الكترون تميكيرند تا يونهاى هم الكترون با يكى گاز نجيب بـا
 خارجي خرد ג الكترون دارند (آرايش واي

 الككترونى كاز نجيبانانـد

$$
2 e^{-}+\mathrm{O}\left(1 s^{2} 2 s^{2} 2 p^{4}\right) \longrightarrow \mathrm{O}^{2-}\left(1 s^{2} 2 s^{2} 2 p^{6}\right)
$$

در واكنش بين سلـيم و اكـيرئن، بازازاى هر اتم اكسيرّن، دو اتم سلديم
 الكترونهاي كُرفته شُده برابر باثيد:

$$
2 \mathrm{Na}++\ddot{\mathrm{O}}: \quad 2 \mathrm{Na}^{+}+: \ddot{\mathrm{O}}:^{2-}
$$

سادهترين نسبت بين يونها در محصصول و اكنشّ، يعنى سليمّ اكسيلد، با فرمول تركيب، يعنى Na

$\mathrm{Ca}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}\right) \longrightarrow \mathrm{Ca}^{2+}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right)+2 e^{-}$ فـرمولت تركيبحاصل از يـونونهاى
 است. كلسيم|كسيد.كمركب از يونهاى

NaCl(s) شـكل V V V V

 به دست مى آيد:
$\mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{\mathrm{r}}(\mathrm{g}) \longrightarrow \mathrm{NaCl}(\mathrm{s}) \quad \Delta H_{f}^{\circ}=-411 \mathrm{~kJ} \quad(1-\mathrm{v})$ حجرخهُ بالا رابه صورت زير مى تو ان وارسى كرد.

$$
\begin{aligned}
\Delta H_{S}^{\circ} & =\Delta H_{\text {subl }}+\frac{1}{2} \Delta H_{\text {diks }}+\Delta H_{\text {lon en }}+\Delta H_{\text {elec af }}+\Delta H_{\text {lat en }} \\
& =+108 \mathrm{~kJ}+122 \mathrm{~kJ}+496 \mathrm{~kJ}-349 \mathrm{~kJ}-788 \mathrm{~kJ} \\
& =-411 \mathrm{~kJ}
\end{aligned}
$$

1-v مثال
انترؤ شبكه
俍
 است. أتنالِي تشكيل MgCl (s)
 كُرماشييميايى آتتالِى تشكيل يك مول MgC1

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{~s}) \quad \Delta H_{f}^{\alpha}=-642 \mathrm{~kJ}
$$

 قرار زير أست:
 Cl
 ا ΔH

$$
\mathrm{Na}(\mathrm{~s}) \longrightarrow \mathrm{Na}(\mathrm{~g}) \quad \Delta H_{\text {subl }}=+108 \mathrm{~kJ} \quad(\mathrm{r}-\mathrm{Y})
$$

 برابر با
 يكى مول NaCl لازم است، فقّط نصف اترٔى تفكيك للازم خوراهد بود.
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Cl}(\mathrm{g}) \quad \frac{1}{2} \Delta H_{\text {diss }}=\frac{1}{2}(+243 \mathrm{~kJ})=+122 \mathrm{~kJ}(\mathrm{r}-\mathrm{V})$

$$
\mathrm{Na}(\mathrm{~g}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})+e^{-} \quad \Delta H_{\text {ion cin }}=+496 \mathrm{~kJ}(\digamma-\mathrm{V})
$$

$$
\mathrm{Cl}(\mathrm{~g})+e^{-} \longrightarrow \mathrm{Cl}^{-}(\mathrm{g}) \quad \Delta H_{\text {elec af }}=-349 \mathrm{~kJ}(\Delta-\mathrm{v})
$$

قبلى كافى نيست.

 (VAA kJ/mol maCl (s)
$\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{NaCl}(\mathrm{s}) \quad \Delta H_{\text {lat cn }}=-788 \mathrm{~kJ} \quad(9-\mathrm{Y})$

ΔH	,	"
+10.k. ${ }^{\text {a }}$	$\mathrm{Mg}(\mathrm{s}) \longrightarrow \mathrm{Mg}(\mathrm{g})$	Mg تصصيد
+VTAkJ	$\mathrm{Mg}(\mathrm{g}) \longrightarrow \mathrm{Mg}^{+}(\mathrm{g})+e^{-}$	Mg اولين انؤئى برتي
$+140 . \mathrm{kJ}$	$\mathrm{Mg}^{+}(\mathrm{g}) \longrightarrow \mathrm{Mg}^{\text {r+ }}(\mathrm{g})^{-}+\mathrm{e}^{-}$	
+Y\#TkJ	$\mathrm{Cl}_{\mathrm{r}}(\mathrm{g}) \longrightarrow \mathrm{Cl}(\mathrm{g})$	$\mathrm{Cl}_{4}{ }^{\text {ت }}$
Y(-YFq kl $)=-99 A \mathrm{~kJ}$	$\mathrm{YCl}(\mathrm{g})+\mathrm{re}^{-} \longrightarrow \mathrm{YCl}^{-}(\mathrm{g})$	
$\Delta H_{\text {laten }}$	$\mathrm{Mg}^{\text {Y+ }}(\mathrm{g})+\mathrm{YCl}^{-} \longrightarrow \mathrm{MgCl}_{Y}(\mathrm{~s})$	ا ان,
$+\backslash \mathrm{ANT}^{+}+\Delta \mathrm{H}_{\text {laten }}$	$\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{\gamma}(\mathrm{g}) \longrightarrow \mathrm{MgCl}_{\Psi}(\mathrm{s})$	J

 أنرُى يونش سـيم (جـدون لا - ا) است:
$+496 \mathrm{~kJ} / \mathrm{mol}+4563 \mathrm{~kJ} / \mathrm{mol}=+5059 \mathrm{~kJ} / \mathrm{mol}$

 زيادى لازم است.

مجموع بواى Na است:
$+738 \mathrm{~kJ} / \mathrm{mol}+1450 \mathrm{~kJ} / \mathrm{mol}=+2188 \mathrm{~kJ} / \mathrm{mol}$

 ${ }^{M g^{+}} \times$لز
 (اولين انزَّى يونش Mg +VFAKJ/mol NaCl Na . MgCl_{4} هـ ($\mathrm{Mg}^{\dagger+}$ تشكيل , MgCl

.

رسيدن به إين آرايش، به هلايل زير مطلوب است:

مقداركل

$$
\begin{aligned}
+1883 \mathrm{~kJ}+\Delta H_{\text {lat en }} & =-642 \mathrm{~kJ} \\
\Delta H_{\text {laten }} & =-2525 \mathrm{~kJ}
\end{aligned}
$$

 ، NaCl (- VAA kJ/mol) دوتركيب ناشى میشود. جاذُّةٌ بين يك يون

 Na^{+}بزرى، در صورتى
 بين اترزى شبكه

$\mathrm{Zn}\left(\ldots 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}\right) \longrightarrow \mathrm{Zn}^{2+}\left(\ldots 3 s^{2} 3 p^{6} 3 d^{10}\right)+2 e^{-}$
آرايش الكترونى يون لم مربوط طبه لايه خارجى يون $d^{\prime} \cdot{ }^{\text {آرايش }}$

اين نوو يونهاست:
$\mathrm{Sn}\left(\ldots 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{2}\right) \longrightarrow \mathrm{Sn}^{2+}\left(\ldots 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2}\right)$

$$
+2 e^{-}
$$

 كه آرايش بكى يون "d
 IIIA

 (d" s^{r}
 همان آرايش لايأ بيرونى يرن الست.
 براي نمورنه میتوان بود. براى توليد يون

(0^{+-}

 Na, O
 Y ا

 كاتيونهاي الي الي

 واكنشهها شركت میكتنـ!:

آرايش الكترونى	لم
$3 s^{2} 3 p^{6} 3 d^{1}$	$T i^{3+}$
$3 s^{2} 3 p^{6} 3 d^{2}$	V^{3+}
$3 s^{2} 3 p^{6} 3 d^{3}$	$\mathrm{Cr}^{3+}, \mathrm{V}^{2+}$
$3 s^{2} 3 p^{6} 3 d^{4}$	$\mathrm{Cr}^{2+}, \mathrm{Mn}^{3+}$
$3 s^{2} 3 p^{6} 3 d^{5}$	$\mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}$
$3 s^{2} 3 p^{6} 3 d^{6}$	$\mathrm{Fe}^{2+}, \mathrm{Co}^{3+}$
$3 s^{2} 3 p^{6} 3 q^{7}$	Co^{2+}
$3 s^{2} 3 p^{6} 3 d^{8}$	Ni^{2+}
$3 s^{2} 3 p^{6} 3 d^{9}$	Cu^{2+}

 دافعةه الكترو نهاى ظرفيتى و گسترش لائّ موبر ط به آنها مىشرد.

نامُظارى تركيبات يونى بر جند قاعده انسترار استت. ابتدا نـام كـاتيون (يون مثبت) تركيب و ديسى نام آنيون (يون هنفى) آنَ مى آيّن.

يكسان خو اهد بو :

 $\mathrm{K}^{+}{ }^{+} \mathrm{g}^{(H)}=1 \mathrm{Tr} \mathrm{pm}$

يك يون مثبت، هميشه كوجَكتر از اتم به وجود آّورنده أَن أست،
(شكا
 ($n=\uparrow$

(ب)

(ail)

 يون

 نام تركيبات يونى شامل نام كاتيون و سيس نام آتئنيون (به صورت

والثمایى جذاكانه) است:
(III) اكـيـيل يا فريكى اكسيد
躬 $\mathrm{Ag}_{4} \mathrm{PO}_{4}$ ($\left.\mathrm{NH}_{\psi}\right)_{Y} \mathrm{~S}$
 ($\mathrm{Mg}\left(\mathrm{NO}_{r}\right)_{r}$
Na^{+}

بغخى فلزات، بيش از يكى نوع كاتيون تشكيل مىيهنـد. در ايـن مسوارد

 مى آيل، مشخص میشود:

$$
\begin{aligned}
& \mathrm{Cu}^{+} \\
& \text {(} \mathrm{Fe}^{r+}
\end{aligned}
$$

 تصى توان به كاركرفت.

يون
 . 0 -
ها ا

$$
\begin{aligned}
& \text { Cr } \\
& \mathrm{O}^{\text {r- }} \\
& \text { ، } \mathrm{N}^{\mu-}
\end{aligned}
$$

 ! !لكترون
次

.

 .

 2

اتم نلزات الكترون مىكيرند.

 بيونى انـت

Anion

تقسيبر ناصلهماي بيو ندي. Bond distances
 هرخ Born - Haber cycle

 Cation كاتيون (بخش لV V

隹 d^{10} نی
 Effective nuclear charge

 (الكتروذذ Electron affinity

 Enthalpy of sublimation
 تبلـيل شود. Ion

 ． أَتُالِى

而
الكترون

I 1 ， BaO ＿V
 ＋490kIl d －
 الكترون انحو اهم

 N

 $I^{-}: 1 \mathrm{~A} \Delta \mathrm{pmo}$信 19 pm بلور الز يونها ． $\mathrm{CaO} \mathrm{CsI}(\underset{\sim}{\text {（ }) ~!~ R b I ~} \mathrm{R}$ RbF（ب）

 （ Yا9 pm ．I－

ترتيب توضبح 2هديد.

场

انتخاب ائن ترتيتب توضبح ديهيلـ.

بيوند يونى، انواع يونهـا

 （2）Y V $\mathrm{Ca}^{\mathrm{rt}}(\mathrm{g})$ （ $: \mathrm{La}^{++}(\lambda): \mathrm{Fe}^{r+}(\rho): \mathrm{Ag}^{+}(\mathrm{e}): \mathrm{S}^{\top-}(\mathrm{c}): \mathrm{K}^{+}(\mathrm{al}): \pm$. $\mathrm{Sr}^{\mathrm{r}+}$（g）

＂انخر كثاب آمله استح．

حواص اتمها

隹

 ．T1 $\mathrm{Ga}(\mathrm{g})$
 （ IFY pm cF－F ：IVo pm جققدر است•
،I－B $!$ Y00pm ．As－I ：$:$ ：
范

 Se ، Sb（ J ）

 lo＝V （ 11 －V V هالورّنها كوجكا IY－V
 IT－V

 ． K 19 －V

$$
. \mathrm{Cu}^{\mathrm{r}+} \mathrm{Cu}^{+}(\mathrm{\rho})!\mathrm{I}^{-}
$$

نامڭذارى تركيبات يونى

$$
. \mathrm{Cr}\left(\mathrm{IO}_{\Gamma}\right)_{\mu}(*)!\mathrm{CdI}_{\gamma}(\nu)!\mathrm{Sn}\left(\mathrm{NO}_{\mu}\right)_{Y}(\tau)
$$

$$
\mathrm{NH}_{4} \mathrm{NO}_{\gamma}(\rho): \mathrm{KMnO}_{\psi}(\rho): \mathrm{Na}_{\gamma} \mathrm{CrO}_{\psi}(\tau)
$$

$$
\mathrm{Li}_{r} \mathrm{SO}_{r}(\Omega): \mathrm{K}_{Y} \mathrm{Cr}_{Y} \mathrm{O}_{V}(\rho): \mathrm{Fe}_{Y}\left(\mathrm{SO}_{r}\right)_{T}(\tau)
$$

 $\mathrm{NaClO}_{\Gamma}(\Omega)!\mathrm{Na}_{Y} \mathrm{O}_{\mu}(2) \div \mathrm{SnF}_{\mu}(\uparrow)$

 مطا 00 - V

 , Na بونى، تو نتط يون S

 .
 الكتروذهاى زد

 $. \mathrm{K}^{+}(\Omega)!\mathrm{Au}^{+}(\mathrm{s}): \mathrm{Hg}(\mathrm{\tau})$

 . $\mathrm{Cd}(\mathrm{A})!\mathrm{Cd}^{\mathrm{r}}(\mathrm{o})!\mathrm{Ba}^{\mathrm{Y}}$ (ج)

 $. \mathrm{Br}^{-} . \mathrm{Bi}^{r^{+}}$

 $\mathrm{Ge}^{\mathrm{T+}}, \mathrm{Ga}^{\text {r+ }}$

بيدست آردريد.

 باشُند را به دبـت آوريـد.

看 يونى

 نغيير میكند؟ (
 $. \mathrm{O}^{r-}-\mathrm{N}^{r-}$ (ه) $\leq \mathrm{Tl}^{r+}$

 $. \mathrm{Mg}^{r+} \mathrm{L} \mathrm{Mg}(*): \mathrm{Sr}^{r+}$! (性 - V

ييوندكووالانسى

بيوند يك بار.

 براى هيدرورّن آرايش دو الكترونى هليم ثايدار است است

$$
\ddot{\mathrm{F}} \cdot+\ddot{\mathrm{F}}: \longrightarrow: \ddot{\mathrm{F}}: \ddot{\mathrm{F}}: \quad(4: \ddot{\mathrm{F}}-\ddot{\mathrm{F}}:)
$$

1. Valence - bond structures
2. Lewis structures
3. Gibert N. Lewis

در فصل بيثى، تشكيل و برخی از خواص تركيبات يونى را مورد بحث

 كروالانسى خالصى را نيز در نظر مىكيريم.

 !
 السِينّهاى مخالفـ) است كه اوربيتالهاءى هر دو اتم دركّير در تشكـيل جيبرند را اشغال كردماند.

بيرند است (شكل ^ - ا ر ا ببينيد).

 هلبم دانست (دو الكترون در تراز (n=1) اين هلاحظات ات بر اين فرض

si EI
 pely简简 1 on row
 B as

NP

F 9 每

 كوروالنانسي بيان كـد．

 ارى N
 صررت زير نمايش داد： $: \dot{N} \cdot+\cdot \dot{N}: \longrightarrow: N: \cap N: \quad(4: N \equiv N:)$

 عبارتند از：

$$
: \ddot{\mathrm{O}}:+: \mathrm{C}:+: \ddot{\mathrm{O}}: \rightarrow \underset{\mathrm{O}}{\rightarrow \mathrm{O}: \mathrm{C}:: \ddot{\mathrm{O}}:} \quad(\mathrm{t}: \ddot{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{O}}:)
$$

شكل＾－ا نـهابش توزبع الكنرون در يكا مولكول هيدرورن

 بار براي هر اتم．

 （بالهـ،

را در نظر بغيريد：

$$
\begin{aligned}
& \mathrm{H} \cdot+\ddot{\mathrm{C}}: \longrightarrow \mathrm{H}: \ddot{\mathrm{C}}: \\
& \text { هيدروزنن كلريد } \\
& \text { (} 4 \mathrm{H}-\ddot{\mathrm{C}} \mathrm{i}: \text {) }
\end{aligned}
$$

$2 \mathrm{H} \cdot+\cdot \dot{\mathrm{O}}: \longrightarrow \stackrel{\stackrel{H}{\ddot{O}}:}{\underset{\mathrm{H}}{\mathrm{T}}}$
$\binom{\stackrel{H}{\mathrm{H}}}{\mathrm{H}-}$
$3 \mathrm{H} \cdot+\dot{\mathrm{N}} \longrightarrow \underset{\mathrm{H} \cdot \stackrel{\mathrm{H}}{\mathrm{N}}: \mathrm{H}}{\text { SLinet }}$
（ $\mathrm{L} \mathrm{H}-\mathrm{N}-\mathrm{H}$ ）
$4 \mathrm{H}+\cdot \dot{\mathrm{C}} \cdot \mathrm{H}: \stackrel{\mathrm{H}}{\mathrm{C}}: \mathrm{H}$
(4)

تيرند كور الانسسى

يو

 كوو الانسسى خو اهل شد.
 هم الكترون با Ar دارند. در اين سري كه شامر

 كورالانسى أست. تركيبات يونى محضض كه كاتيو

كوورألانسـ، اند.

 هتصل شونل.

 متفاوت خخ اهل بود.
哣 BrCl

1. Ion distortion
2. Polarization of covalent bonds
$2 \mathrm{H} \cdot+\dot{\mathrm{C}}:+: \dot{\mathrm{C}}+2 \mathrm{H} \cdot \mathrm{H}: \stackrel{\mathrm{H}}{\mathrm{C}}: \stackrel{H}{\dot{\mathrm{C}}}: \mathrm{H}(\mathrm{L}$

انيلن
$\mathrm{H} \cdot+\cdot \mathrm{C} \vdots+\mathrm{C} \cdot+\cdot \mathrm{H} \longrightarrow \mathrm{H}: \mathrm{C}: \vdots \mathrm{C}: \mathrm{H}(\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{H})$ استبلن

 استو ار اسست بيردازيم.

بيوند شيميا يیى در بيشتر تركيبات، از نظر خصلتا احـد واسط بين بيوند

 حالت بيوند در اغلب تركيبات شيميايى، بيئ اين دو حالت حلدّ قرار
 وإيبحش يون' الستوار است. خْصلت بيوند در تركيبي هركب از يكى فلز

 1

 Y

 كاتيونى بالاشت. ()

$$
\begin{aligned}
& \text { as } 2, \quad N^{\prime}= \\
&=\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.27 \times 10^{-10} \mathrm{~m}\right) \\
&=2.03 \times 10^{-29} \mathrm{Cm}=6.08 \mathrm{D}
\end{aligned}
$$

 گشتاور دو قطبى تحربى HCl بـرابـ,

$$
1.03 \mathrm{D} / 6.08 \mathrm{D}=0.169
$$

-

 الككتوناگاتيز أتم Cl H انست، و بار منفى جزئى، جزئى،
منهوم الكترونگاتيوى گُحهه دقيق نـيست انــا مـفيلد است. مسقادير

 براى غلبه بر بارهاى جززئى، +

 ها ياين سمت چجِ قرار دارند.

1. Linus Pauling
2. Debye
3. Partial ionic character
4. Electronegativity

است، اتم بـرم بـايلد دالرالى بـار مشبت مسـاوى بـا بـار مـنفى اتـم كـلـر

 بيون

 جلاگانه اسـت (شكل (شا

 *هى مقى

(ناصلد) (با = =ششثاور دو قطبیى

 مولكو له، افزايش مى يابيلد.
 جز نُى

جلو

تغارت 		اتر اتر（3） （ $\mathrm{kJ} / \mathrm{mol}$ ）	 （D）	0\％ هاليد
1λ	$F=F, 0$	Q90	1，91	HF
$1 ;$	$\mathrm{Cl}=r_{\mu} r$	Frl	1， $\mathrm{OH}^{\text {r }}$	HCl
－λ A	$\mathrm{Br}=r_{\text {，}}$	He\％	－j $\times 1$	HBr
－ 0	$1=r, \gamma$	Y8V	－رّN	HI

 ذ躬
 باشلـ،
 بيانگ゙

 بي

 با بالاترين الثرز ى

 شاختا，اتم هو， بستَ

 PO—F （الف）＂نفاوت الكترونكاتبوى به قرال زير است：
$N-0$ in C－O H，O
．جاول 1 ـ ـ الكترونگاتيرى نسبى

$\begin{aligned} & \mathrm{H} \\ & 2.2 \end{aligned}$	
$\begin{aligned} & \mathrm{Li} \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{Be} \\ & 1.6 \end{aligned}$
$\begin{aligned} & \mathrm{Na} \\ & 0.9 \end{aligned}$	$\begin{aligned} & \mathrm{Mg} \\ & 1.3 \end{aligned}$
$\begin{aligned} & k \\ & 08 \end{aligned}$	$\begin{aligned} & \mathrm{Ca} \\ & 10 \end{aligned}$
$\begin{aligned} & \text { Rb } \\ & 08 \end{aligned}$	$\begin{aligned} & \mathrm{Sr} \\ & 0.9 \end{aligned}$
$\begin{aligned} & C_{5} \\ & 08 \end{aligned}$	$\begin{aligned} & \mathrm{Ba} \\ & 0.9 \end{aligned}$

$\begin{aligned} & \mathrm{B} \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 34 \end{aligned}$	$\begin{aligned} & F \\ & 4.0 \\ & \hline \end{aligned}$	Ne
$\begin{aligned} & \text { Al } \\ & 1.6 \end{aligned}$	$\begin{aligned} & \mathrm{si} \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & p \\ & 2.2 \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & 2.6 \end{aligned}$	$\begin{aligned} & C 1 \\ & 3.2 \end{aligned}$	Ar
$\begin{aligned} & 68 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \mathrm{Ge} \\ & 2.0 \end{aligned}$	$\begin{aligned} & \text { AS } \\ & 2.2 \end{aligned}$	$\begin{aligned} & \mathrm{Se} \\ & 2.6 \end{aligned}$	$\begin{aligned} & \mathrm{Br} \\ & 3.0 \end{aligned}$	K_{r}
$\begin{aligned} & \text { In } \end{aligned}$	$\begin{aligned} & \mathrm{Sn} \\ & 20 \end{aligned}$	$\begin{aligned} & 36 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{Te} \\ & 2.1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2.7 \end{aligned}$	Ke
$\begin{aligned} & \pi 1 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & 2.3 \end{aligned}$	$\begin{aligned} & \mathrm{Bi} \\ & 20 \end{aligned}$	$\begin{aligned} & P_{0} \\ & 2.0 \end{aligned}$	$\begin{aligned} & A_{i} \\ & 22 \end{aligned}$	R 2

 1． 1 با的

 ．

شيك نافلزى عناهصر

 است، هي توان به دست آَّردر．

 قراردادي ندارند．

 برابر با：

＋（＂عدلاد

خولهد بود．اكُر الكترون ظرفيتى نداشثت، اين رقم برابـر بـا بـار التمى

 بـ اين موارد برابر است با：

بنابراين، بار قراردادى اتم شركتكنتـهـ دـ يبيوند آز فرمول زير بـه دست خراهد آمد：

－（تعاد（ت）

综 $=+0-4-0=1+$

بار قراردادى هر اتم

倍 $=+1-1-0=0$

 بار

 （ب）تناوت الككترونكاتيوى عناصر به ترار زير است：
$S-F$ F F S

㥩

－

 NH_{+}^{+}اين شـثاهدات

بار قراردادى مر اتم Cl:

در تتيجه، ساختار مو لكرل به صورت زير است:

-
 اين روش، در مثالل ^ - آمداهناست.

$$
\begin{aligned}
& \text { r-A مثال } \\
& \text { ساختار لوويس يون كلرات، } \\
& \text { مركزي است كه سه اتم اكيسيزن به آن متصل شـدلمداند. }
\end{aligned}
$$

 اللكترونهاى ظرفيتى در

$$
\begin{aligned}
& \text { v (از اتم }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{r 9} \text { (از بار ئئى) }
\end{aligned}
$$

1. Adjacent charge rule

 د

"میویم:

بار قراردادى اتم اكسيرئن (O) برابر استت با:

$$
\begin{aligned}
& \text { - (تعداد -هعهاى نايبيوندى) } \\
& =+c-1-c=1-
\end{aligned}
$$

بار قراردادي اتم P:

> بار تراردادى

 (تماداد $)$
(تعداد - "عهاي نايبيرندى) -

قراردادى يكى يون برابر با بار آن يون استـ.
r

$$
\text { بار قراردادى هر اتم } 0 \text { برابر است با: }
$$

ساختار نها يع به صورت زير است:

توجه داشُتدباشيد كه جمع جبرى بارهاى قرازدادى برابر بار يرنها يعنیى - 1 - است

Y ـ تعداد الكترونهاى لازم براي آنكه بـ هر اتم H H دو الكترون و بـه بـ
 مورد بحث مان، يعنى

$$
=r(0)+\Delta(\Psi)=r r
$$

$$
\begin{aligned}
& =T r-r=\%
\end{aligned}
$$

 ساختار نهايى است:

Y

$$
=s / r=r
$$

(تعداد

$$
=r q-q=r_{0}
$$

V V - بار قراردادى اتمها رانشاندهيد. بار قرإردادى اتمكلر برابر است با: با:

$$
\begin{aligned}
& =+\gamma-r-r=r+
\end{aligned}
$$


```
داده هـده است بنريسيدي
```



```
                                    نإيبرنــى است:
```



```
    آنها مشخص كنيد.
```


$$
=Y(1)+A(Y)=r K
$$

 $=H Y-Y H=10$

$$
=1 . / Y=0
$$

(Gil)

(ب)

(()

$$
=14-1 \cdot=14
$$

(الف)

($($

(c)

براى اتم 0 سمت راست،
-
ساخثار نهايُى به صورت زير است:

$$
\ddot{O}
$$

 كرد كه در آن اتم اككسيرن سمت راست با يبيوند دوكانه بها اتم S متصلم شـده باشد.

بم ساختار لوويسنيتريكاسيلـ، بHNO

1 ـ ت تعداد كل الككترونهاى ظرنيتى در اين مولكول:
1 ($\mathrm{H}_{\mathrm{H}} \mathrm{H}^{-1} \mathrm{l}$)

- (ازاز (1)

 د - A

 O 0

 (1 F 1 pm)

 فرمها

 1

 رزوناتسى يون سياتاتات نيست.

(الe)

(ب)

($\tau)$

ג-7

 آَهـ را در نظظر بِكِير يد:

$$
\because \stackrel{\ddot{\circ}}{\square}
$$

 ، ${ }^{\text {SO }}$

$$
\ddot{\mathrm{S}}^{\oplus} \cdot 0: \ddot{\mathrm{S}}^{\oplus} \longleftrightarrow 0
$$

 با -

 عادي.بودن مولكول SO.

 دارد (قاعدهُ ب).

 يعنى الكترونگاتيو توين اتم ساختار است.

$$
\begin{aligned}
& 0 \text { مثال } 0 \text { م }
\end{aligned}
$$

اكسيد مو لكو للي خطى با آرايش NNO استـ.

ح
 بك كار میى

1. (N) (N)
$\frac{9}{19}$ (الز

- r

-r
 $=\mathrm{rt}-19=\mathrm{A}$
-

$=\mathrm{A} / \mathrm{Y}=*$
 بهنظر میرسـد:
$\mathrm{N}=\mathrm{N}=\mathrm{O}$
(
$\mathrm{N} \equiv \mathrm{N}-\mathrm{O}$
$\mathrm{N}-\mathrm{N} \equiv \mathrm{O}$
(()
(

$$
=1.6-\Lambda=\lambda
$$

 : $\mathrm{FNO}_{\mathrm{r}}$

 يكى از فرمهاى رزونانسى مهكن برايى يون سيانات:

فرم رزونانسى (ج) سهم جـندانی در هيبريد روزنانسـى ندارد، زبـرا بـار قراردادى اين فرم بالاتر از ساير فرمهماستاست.

 مسكن میبا شـلـ. فرم دزونانسّى،

$$
: \ddot{\mathrm{O}}-\stackrel{\oplus}{\mathrm{C}}=\ddot{\mathrm{N}}: \stackrel{\theta}{\theta}
$$

 و/اشتها باتُدلد.

(الف)
(ب)

ثj2	山，${ }^{2}$
1	－ザ
r	－52
r	－53：
＊	－تتر
0	－
9	50
V	－
\wedge	－｜ 0 ｜
9	－
1.	－ 6

$$
\begin{aligned}
& \text { NO } \\
& \text { 的 } \\
& +5 \text { SO } \\
& \text {. }
\end{aligned}
$$

تركيبات دوتايى معيني نام غير سيستماتيك دارنـ كه منحصراً با بآن

 موارد اتم هيارورزن كـترين الكترونتاتاتيوى را دالزاست．

$: \ddot{\mathrm{N}}=\mathrm{N}=\ddot{\mathrm{O}}:$	$: \mathrm{N} \equiv \mathrm{N}-\ddot{\mathrm{O}}:$	$\ddot{\mathrm{N}}-\mathrm{N} \equiv \mathrm{O}:$
（فil）	(c)	(c)

V－ـبا افزودن بارهاى قراردادى، به ساختارهاى زير میرسيم；
${ }^{\circ}: \ddot{N}=\stackrel{N}{N}=\ddot{0}:$
（النـ）
$: N=\stackrel{\oplus}{N}-\ddot{O}:^{\ominus}$
（ب）
（27）$: \ddot{\mathrm{N}}-\stackrel{\oplus}{\mathrm{N}}=0:^{\oplus}$
（ \subset ）

$$
: \ddot{\mathrm{N}}=\stackrel{\oplus}{\mathrm{N}}=\ddot{\mathrm{O}}: \longleftrightarrow: \mathrm{N}=\stackrel{\oplus}{\mathrm{N}} \quad \ddot{\mathrm{O}}:
$$

 （＾－V

نامگذ.ارى آنها را در فـصل r^ خوراهيم ديد.

 نامخگدارى اكسيلـهاى نيتر ورّن اشاره ميكنيم：

1．Binary compound

حكيدهُ مطالب

 بو لكولى از تركيب انستفاده مىـيـود.

مغاهيمر كليدى
قاعده بار مجاور (تخـي A Adjacent charge rule
 Binary compound

Covalent bond

 مشترك وجيود دارند. Dipole moment

 (بار تار تراردادي (Formal charge

 , VR D

 $=145 \% \times 10^{-r 60} \mathrm{Cmm}$ m

الكترونگاتيوى ال ا 11

حالتهاى كذار بين پيوتانهاى كووالانسى و يونى
 دارند را ان ام بيربيا
P1 هر

 از اين نوع بيونا بيأوريد.

 .

（ A A A A

 نرمول متصل اند． （

رو PV－A
 هيبونيتربت．هو

$$
\mathrm{O}-\mathrm{N}=\mathrm{N}-\mathrm{O}, \quad \mathrm{O}=\mathrm{N}-\mathrm{N}-\mathrm{O}
$$

ر

$$
\mathrm{F}-\mathrm{N}=\mathrm{N}-\mathrm{F}, \quad \mathrm{~F}=\mathrm{N}-\mathrm{N}-\mathrm{F}
$$

ر A A A A

$\mathrm{H} \quad \mathrm{O} \quad \mathrm{N}=\mathrm{S}, \mathrm{H} \quad \mathrm{O}=\mathrm{N} \quad \mathrm{S}$

（ا－＾OX

$\mathrm{Cl}-\mathrm{C}=\mathrm{N}, \quad \mathrm{Cl}=\mathrm{C}-\mathrm{N}, \quad \mathrm{Cl}-\mathrm{C}=\mathrm{N}$

（ Y A

 سهيم در هيبريد زنونأنسى ارزيابي كنيلد．

 N ． $\mathrm{Ca}(s): \mathrm{N}, \mathrm{C}(b): \mathrm{I} \subset \mathrm{C}(\tau): \mathrm{H} / \mathrm{C}(\mathrm{j}): \mathrm{Cl}$ A ـ

 $\therefore \mathrm{Cs}-\mathrm{H}(\underset{\mathrm{C}}{ }): \mathrm{Cl}-\mathrm{I}, \mathrm{C}-\mathrm{I}, ~ \mathrm{Ca}-\mathrm{I}, \mathrm{Cs}-\mathrm{I}(\mathrm{Y}): \mathrm{Cl}-\mathrm{O}, \mathrm{C}-\mathrm{O}$

$$
. \mathrm{Cl}-\mathrm{H} \cdot \mathrm{H}-\mathrm{C} \cdot \mathrm{H}-\mathrm{Ca}
$$

 ：N－O N－S（C）！N－F：N－H：O－F：O－H（ب）：N－F $. \mathrm{S}-\mathrm{Cl}$ ،N－Cl

 ،N－H（ج）！ P （ $. \mathrm{P}-\mathrm{O}, \mathrm{N}-\mathrm{O}(\mathrm{g})!\mathrm{P}-\mathrm{S}, \mathrm{N}-\mathrm{S}(土) \leq \mathrm{N}-\mathrm{Cl}$ ، $\mathrm{N}-\mathrm{H}(0) \leq \mathrm{N}-\mathrm{F}$

 $\stackrel{\mathrm{H}-\mathrm{Te}(\mathrm{g}): \mathrm{S}-\mathrm{Cl} \because \mathrm{O}-\mathrm{Cl}(\mathrm{A}): \mathrm{Si}-\mathrm{O}, \mathrm{C}-\mathrm{O}(\mathrm{s}): \mathrm{C}-\mathrm{S}}{ }$

$$
. \mathrm{I}-\mathrm{Se} . \mathrm{Te}-\mathrm{I}(\mathrm{j}): \mathrm{H}-\mathrm{Se}
$$

ساختارهـاى لوويس （تشا 19 － 19 Q
 （
 بع أز أز （H0－人

 خود M ا 1
泿
 （
屋
俍

 متصل تُسده است stacile

 (
 $O \mathrm{NE}_{r}^{+}(0): \mathrm{ONF}_{\Gamma}(\omega): \mathrm{NF}_{\Gamma}(2): \mathrm{NSF}_{\Gamma}(\tau): \mathrm{O}_{\Gamma} \mathrm{NF}(\varphi)$ _ 1

 ارزيبابى كنيد.

(4) $\mathrm{H}-\mathrm{C}=\mathrm{N}=\mathrm{N}, \quad \mathrm{H}-\mathrm{C}-\mathrm{N} \equiv \mathrm{N}$
(() $\mathrm{N}=\mathrm{S}-\mathrm{F}, \quad \mathrm{N} \quad \mathrm{S}=\mathrm{F}$
و

 الزيابي كنبـد $\mathrm{F}-\mathrm{C} \equiv \mathrm{N}, \quad \mathrm{F}-\mathrm{C}=\mathrm{N}, \mathrm{F} \equiv \mathrm{C}-\mathrm{N}: \mathrm{FCN} \mathrm{S}$, بر (e (l) $\mathrm{N}-\mathrm{N} \equiv \mathrm{N}, \quad \mathrm{N}=\mathrm{N}=\mathrm{N}, \quad \mathrm{N}=\mathrm{N}-\mathrm{N}: \mathrm{N}_{\Gamma}^{-} \mathrm{G}, \mathrm{\mu}$ (ب) $S-C=N, S=C=N, S=C \quad N: S C N^{-} \leqslant(T)$ $\mathrm{N}-\mathrm{C}=\mathrm{N}, \quad \mathrm{N}=\mathrm{C}=\mathrm{N}, \quad \mathrm{N}-\mathrm{C}-\mathrm{N}: \mathrm{CN}_{+}^{\gamma-} \mathrm{s}^{\prime}$ بر (2)

和
 كتبد. در هر 2و تركيب 2 در

A - 1 (FNNN را رسم كتبد.
 - 1

را رسـم كنيا. $\mathrm{H}_{Y} \mathrm{NNO}_{\gamma}$ ـ
 _ FY ـ A
 , А ONNO ${ }_{\text {r }}$, A

ناهـذارى تركيبات دو تايه كووالانسي
(ب) A 1

(A - A

 $\mathrm{XeF}_{F}(g): \mathrm{CIF}_{\Gamma}(\Omega)!S_{Y} \mathrm{~F}_{10}(\Omega)!\mathrm{P}_{\gamma} \mathrm{S}_{\Gamma}(\tau)$

C A A A

 .
. $\mathrm{N}_{\mathrm{Y}} \mathrm{CN}^{-}$, NO^{+}.CO CO ـ 1

شكل هناسى مولكول، اوربيتال مولكولى

درنتيجه، تعداد بيرندهاى كوروالانسى مربوط به اتمهاى ايـن عـناضر،

疗

 H

- Valence - shell electron-pair repulsion $\overline{\text { | }}$ - VSEPR . 1

 (NO و و

 (ز)

 ظرنيتى است:

(حدود

 دافعٔة بين زوجهاى ييرندى است.
 CH_{4} مولكول حنين است:

خطى است:

$$
\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}
$$

 زوج الكترون بيوندى (و فاقد زوج الكترون نايبوتدى) در لايه طـرفيتى

 (VIIA مولكول بور ترى فلوئوريده سهـ كوششاى (مثلثى) و مسـطح است:

قلع (II) كلريد، سـكورشهاي هستند. |r. ${ }^{\circ}$ 品

$$
\text { شكل } 9 \text { ـ ا آرابشى سـ كرشهانى مسطح براي سـ ووج الكترون }
$$

 اتم مركزى

 . الس ($(\mathrm{H} \cdot \mathrm{Fpm})$

 يك زوج تاييوندى بانتى هاندهاندي:

 تشكيل دادهاندا:

1. Trigonal bipyramide
2. Axial positions
3. Equatorial positions
4. Irregular tetrahedron

شكل 9 ه - 9 شك

$$
\begin{aligned}
& \text { در لائٌ ظرفيتى أتم O در مولكول آبَ، دو زوج ييوندى و دو زوج } \\
& \text { نإيونديى وجرد دارد: }
\end{aligned}
$$

 H

 ريويوندي است:

[^7]

䍝 T (C)

$$
\text { (ب4جاى } 90^{\circ} \text { مي شود. }
$$

هر سه زوج اللكترون نابيروندي، مبوتعيتهالى استوا أيى را اشغال ميكتند،

\%			4	\%
	-	ज1909		
r	r	-	¢ L^{2}	$\mathrm{HgCl}_{4}, \mathrm{CuCl}_{5}$
r	r	-		$\mathrm{BF}_{T}, \mathrm{HgCl}^{-}$
*	r	1	- jousjly	$\mathrm{SnCl}_{4} \mathrm{NO}_{+}^{-}$
*	${ }^{*}$	-	(स) 14	$\mathrm{CH}_{4}, \mathrm{BF}_{+}^{-}$
*	-	1		$\mathrm{NH}_{4}, \mathrm{PF}_{\mu}$
*	r	r)	$\mathrm{H}_{4}^{\mathrm{O}}, \mathrm{ICl}_{+}^{+}$
\bigcirc	0	-	\%	$\mathrm{PCl}_{2}, \mathrm{SnCl}_{2}^{-}$
-	*	1	隹	$\mathrm{TeCl}_{f}, \mathrm{IF}_{*}^{+}$
0	+	r	-	$\mathrm{ClF}_{Y}, \mathrm{BrF}_{Y}$
9	r	+	خ2	$\mathrm{XeFF}_{4}, \mathrm{ICl}_{4}^{-}$
,	9			$\mathrm{SF}_{y}, \mathrm{PF}_{\gamma}^{-}$
4	,	1		$\mathrm{IF}_{0}, \mathrm{SbF}_{0} \mathrm{O}_{0}$
9	*	r	-	$\mathrm{BrF}_{+}^{-} \mathrm{XeF}_{*}$

$$
{ }^{\ominus} \mathrm{N}=\stackrel{\oplus}{\mathrm{N}}=\mathrm{O} \longleftrightarrow \mathrm{~N} \equiv \stackrel{\oplus}{\mathrm{~N}}-\mathrm{O}^{\ominus}
$$

$$
\mathrm{O}_{\mathrm{O}}^{\ddot{\mathrm{N}}} \longleftrightarrow \mathrm{O}^{\ddot{\mathrm{N}}} \mathrm{O}^{\ominus}
$$

زاويهُ بيرندى اين مرلكرل، به علت اثو زوج الكترون نايبيرندى، بـجانى 170 1110°

در اين يرن، تمام زواياى يبرندى O-N-O برابر O

 بيوندهاى N-O Aهتـند.

1. Square pyramid
2. Triangular planar

اتم برم دارایى مفت الكترون ظرفيتى است (گُرْه VII A). از اين تعداده،

生 1 رسيده است
 دو زوج نإيبرندى است:

براي توضيح بار اين يون، مى توان تصور كرد كـ اتم مركزي I با با كُتتن

 داده شُده استٍ

$$
\mathrm{O}=\mathrm{C}=\mathrm{O} \quad \mathrm{H}-\mathrm{C} \equiv \mathrm{~N}
$$

 ساختار

البته، يكى ييوتد دوگانه، بيشتر از يك يِيوند ساده، نضضا را اشثغالل مىكتد. C-Cl OCCI بل بكديگر مى شـرد. درنتيجه، زاويهُ بيوندى، Cl-C-Cl، بـه جـاى
.

 . $109^{\circ} \mathrm{K} \mathrm{KA}^{\prime}$

 ($1 s^{r}$ r s^{\prime} r r p'r r $p^{\prime} r p^{\prime}$ (

 و

 كرجه تشكيل

مثال 1 - 1

 الكترونها بهدست مىي آيد:

	الكترو	تعداد زوجالكترونها			شكل
	$\overline{A+X+\text { chg }=j 5}$	${ }^{5}$	\%	نإيوندا	
(al) TiCl_{+}^{+}	$r+r-1=r$	r	Y	。	, ${ }_{\text {br }}$
(ب) $\mathrm{AsF}_{\Gamma}^{+}$	$0+r-1=9$	r	r	1	زإوبها
(c) IBr_{5}^{-}	$r+r+1=10$	0	r	r	
(3) SnCl_{μ}^{-}	$r+r+1=\lambda$	+	r	1	هرمبّ
(-) $\mathrm{ClF}^{\text {a }}$	$v+y+1=1 y$	4	*	Y	مربع مسط

r-9 مثال
 .

$$
\begin{aligned}
& \text { (e) }
\end{aligned}
$$

Jte	जutit	+	- دا
HgCl_{4}	+	$s p$	s. p_{z}
BF_{r}	س	sp ${ }^{\text {r }}$	s, p_{s}, p_{y}
CH_{4}	, 179,40	$s p^{+}$	s, p_{x}, p_{y}, p_{z}
PtCl_{+}^{r-}	ramer	$d s p{ }^{\text {r }}$	$d_{x^{r}-y^{y}}, s_{1}, p_{x}, p_{y}$
PF_{0} 。L	-tur gepar	$d v p p^{\top} \leq s p^{\top} d$	$d_{z^{r}}+s_{1}, p_{x}, p_{y}, p_{z}$
$\mathrm{SF}_{¢}$		$d^{\top} s p^{\top} u s p{ }^{\top} d^{\top}$	$d_{z}{ }^{+}, d_{x}{ }^{\top}-y^{r}{ }^{\text {r }} s^{\text {a }}, p_{x}+p_{y} \cdot p_{z}$

1. $s p^{3}$ Hybrid orbital

 الكتروندها نيسـتـ
هو اور اوبيتال هيبريندى خصلت

 برأى توصيف نحوه تشكيل بيوند در مـو لكو لهاهي ديگـر از

 بهدست آودد. يكى از سه اووربيتال

俍

 ,
 ريو تدى ى بشا

 و

 بينيند). الوربيتال

75

ब15

 'وربيتان با بو جود دنمى آَورد.

1. Method of molecular ortitals
2. Sigma bonding erbital
3. Sigma antibonding orbital

هيبريدى هشت وجهى را میىتوان

 رفتهاند. زاليةٌ بيوندى H

 اوربيتالهـايى

 |ورببتال

 مولكولنهاى دو اتمى جور هستئ عـناصر تناوب دوم (مـولكربالهاى)

[^8]
 اوربيتالهاي 5 اك 2 اتم اتم
ييوندها دز هو لككو ل است (درجئ سيرند' '):

، براى مو لكول
دريبة

$$
\text { 苂 }=\frac{1}{r}(r-Y)=0
$$

خواهدد بود. از تركيب دو اوربيتال

 اوربيتال

 كه در (الفن)، اوربيتال

 است. درنتيجه، مو لكول
 . $\frac{1}{r}(r-0)=1$

 $\mathrm{Be}_{r} \mathrm{U}^{\mathrm{T}}$ وجود ندارد.

 قرار داده میشّدد.

$\bigotimes_{\sigma^{\prime} 2 p}$	\mho_{σ}	$\prod_{\sigma^{*} 2 p}$
* $2 p$	** ${ }^{\text {P }}$	$\pi{ }^{*}$ \%
		11.
020	ब2p	-2p
11	11.16	1. 11
$\pi 2 p$	$\pi 20$	\#2p
(3)	(1)	(4)
o*2s	0×5	$9 \cdot 25$
11.	11	16
-2s	-2s	a2s
B_{2}	C_{2}	N

$N_{T} \neq \cdot C_{T} \cdot B_{Y}$ شكل 4 -

شـكل 4 -

$$
. \mathrm{F}_{\mathrm{Y}}, \mathrm{O}_{\mathrm{r}}
$$

 اوربيتالهایى Y Y P تشكيل دهنده: اوربيتال تشكـيل اوربـيتال

 نيز صادق است.
در تكو ين ترتيب نشان دأده شله در (ب)، فرض بـر ايـن است كـه r اوربيتالهاي s به كار رفته بـراى تشكـيل اوربـيتالهأى
 F و وربيتالهای

شيشن بينى شود ((

 نمودار آنييونهاى

 ترتيب واقتي نامشخخص استا

 . N_{Y}

درمهود د

 تهودارهانى

 الوربيتاله هاى

قابل قبول نيست. گرحهـ اين ساختار بيرند دوكانهُ مولكول

$0_{0} 20$	$\sigma_{\sigma^{2}+20}$
$4 \pi_{\pi}$	(1)
(11) 11	(16) 11
$\pi 2 \rho$	$\pi 20$
(16)	(11)
-2p	-20
$\frac{14}{025}$	$\underbrace{(9)}_{\sigma^{\prime}, 2 s}$
(11)	11.
ars	a 2 s
O_{2}	F_{2}

FY

نُمايّي داده شـدهاندالد)
(19-9

 اسكلت يبّوندهاى σ در مو لكول اتيلي بهصورت زير است:

 . (IV - 9 شكا)
 هيبريدى

$$
\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}
$$

NH_{r} و براى مورلكرله

$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
U
اتيلن
استينـ

با قرإر دادن يك يبيرند دوكانه در ساختار

 بيوند

 ساده بـ طرل (10v pmi) امست.

据 م

[^9]

 داده است.يكى از أوربيتال هايى pr كرفته نشده است. اين اوربيتال

 سرولثير توىأكيـيه، .

 كرو ألانسى (تاعده هشتايـى) در مرود P Pا صادق نيست.

> شده ابست. دون سولفات

 خصلت

به قراز زيو اسـت،

H

طول سه وبيو ند

 Cl—O

فسفات افلب به صورت زبر نمايش داده میشبرد:

$$
\left[\begin{array}{c}
0 \\
0-\mathrm{P} \\
0
\end{array}\right]^{3-} 0
$$

 دوگانه داشته باشنذ، امّا اين بيونلـها با استفاده از الوربيتالههأى وجود مكـ آينـا.

به صورت زير است:

 بـيونا
 بيرّد الست،

جكيله

 الكترون لا اتح هركزي

,

مفاهيرمكليلـي

الوربتالل میتوان توصيف كرد.
Molecular orbital
بكى شولكول، نه به بك اتم.
; Nonbonding pair of electrons, lone pair of electrons

共 π bond
 sigma bond

دا دعi زوج الكترون لاين Valence - shell - electron - pair repulsion

اوربـئّال هـ, Antibonding molecular orbital

 (أر Bonding molecular orbital

 ;ؤر الكترون هيو Bonding pair of electrons
 كورالانانسى بين دو اتم استح.
Bond order
 Hybridization

 (9
 آنّا C Y = C تولكرل

 . $A B_{e} E_{Y}, A B_{0} E \cdot A B_{\gamma}, A B_{r} E_{r}, A B_{r} E_{r}, A B_{r} E$
 زوج اللكترون با A A بيرند دارد. زوإياى بيرنـا

 $\cdot \mathrm{GeF}_{\Gamma}^{-}(\mathrm{s}): \mathrm{AsCl}_{\psi}^{+}(b): \mathrm{AsF}_{T}^{+}(\tau): \mathrm{iBr}_{Y}^{-}(j): \mathrm{AsF}_{+}^{-}(g)$

! . $\mathrm{NH}_{*}^{+}(\mathrm{s})$

اوربيتالهماى مولكولى، بييوند
 بامه متايسه كنبّ.

 . $\mathrm{He}^{+}(\mathrm{A})!\mathrm{He}_{\varphi}(\mathrm{a})$

 LC CT (ج) (ح) كدام مولكول ختثى هم الكترون است اسْ
 $0_{\gamma}^{\gamma-}$
 مولكولى را ابراى

 NO , CO 9 ـ 9

 را تيبين كيند.

 طول هيوند را در PMF

مسائل طبقهبندىنشده (9 ; ;
 (9 9 ـ 9 ه

 : $\because \mathrm{FCO}_{\varphi}(\mathrm{j}): \mathrm{COO}_{+}^{+}(\rho) \div \mathrm{NCCN}(\hat{}): \mathrm{HCCH}(\rho): \mathrm{H}_{\uparrow} \mathrm{NNH}_{\gamma}(\tau)$. $\mathrm{XeF}_{\mathrm{Y}}(b)!\mathrm{F}_{\mathrm{Y}} \mathrm{ClO}^{+}(\tau)$
 بريسي كنبد.

 نيع اوريبتال هيبريبي استفاده میكند؟

 $\mathrm{H}_{\mathrm{r}} \mathrm{PO}_{\gamma}^{-}(\mathrm{a}): \mathrm{XeO}_{r}(د)!\mathrm{HCN}(\tau)!\mathrm{O}_{\varphi}(ب)$

 . $\mathrm{CO}_{\Gamma}^{+-}(\Delta)!\mathrm{N}_{\Gamma}^{-}(\Delta)!\mathrm{ClO}_{\Gamma}^{-}(\mathrm{T})!\mathrm{OClO}^{-}(ب)$

 . $\mathrm{OSbCl}(A)!\mathrm{SF}_{\mathrm{Y}}(\mathrm{s})!\mathrm{SeO}_{\gamma}(\mathrm{T})!\mathrm{OPCL}_{T}(\mathrm{C})$

 . $\mathrm{H}_{\mathrm{T}} \mathrm{O}^{+}(\Omega)!\mathrm{O}_{Y} \mathrm{SCl}_{r}(\Omega)!\mathrm{OCN}^{-}(\widetilde{)})!\mathrm{O}_{\mathrm{T}} \mathrm{NCl}(ب)$ IV ـ 9
 $\left.. \mathrm{NO}_{\Gamma}^{-}(\Delta): \mathrm{NH}_{+}^{+}(\Omega): \mathrm{NH}_{\Gamma}^{(}\right)$($): \mathrm{NO}_{\Gamma}^{+}(ب)$
 :SO $. \mathrm{SCl}_{\psi}(\Omega): \mathrm{SO}_{\psi}^{\psi-}(\Omega): \mathrm{SO}_{r}^{+-}(\tau)$

 (世 Q*

 (ح 9
 (OSF . $\mathrm{OClF}_{Y}^{-}(\Omega)!\mathrm{O}_{Y} \mathrm{ClF}_{\psi}^{-}(\Omega)!(\mathrm{HO})_{Y} \mathrm{XeO}_{Y}(\tau)$ (ج

 محورى را الشغال كتند با الستوايكي؟

 (Q Q Q 9 $\mathrm{NC}_{\mathrm{r}}\left(\widetilde{\text { (}}\right.$) $\leq \mathrm{CCl}_{\mathrm{T}}$ (ب) $\leq \mathrm{Cl}_{\mathrm{r}}^{\mathrm{O}} \mathrm{O}$ (ill)

 © $\mathrm{BF}_{*}^{-}{ }^{-}$(ج) . $\mathrm{IF}_{9}^{-}(\Delta)!\mathrm{PF}_{0}(د)$

3 9

4 ـ 4
دياكسيد، SO

$$
\left.\left(\frac{r}{T}\right)_{T}=a_{r}\right)_{r=}
$$

$$
\frac{r_{1}}{T_{1}}=\frac{r_{r}}{T_{r}}
$$

do :

$$
\left(P \propto \frac{1}{r}\right)_{T_{\text {om }}} \leq\left(P r_{4}=E_{1}\right.
$$

$$
\frac{P V}{T}=\tau i, i, \omega=n R
$$

كاز

$$
\text { pr=ngt } \quad\left[R=1,9 \Lambda \frac{\mathrm{Cal}}{\text { mol, }, \mathrm{K}}\right.
$$

كاز، مجمرعهاي از مرلكولهماى بسياز دور از يكديخرند كه در حركت

رإنيرد

$$
\begin{aligned}
1 \mathrm{~Pa} & =\frac{1 \mathrm{~N}}{1 \mathrm{~m}^{2}} \\
& =\frac{1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{1 \mathrm{~m}^{2}}=1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}^{2}
\end{aligned}
$$

 .

 داخل بشقاب، ستون جيوه رادر داخلى لولى نكا، مىیارد.

 شـدهاست.

1-1 1-1 مثال

$$
P_{i}=0.750 \mathrm{~atm}
$$

$$
P_{f}=1.000 \mathrm{~atm}
$$

$$
\begin{aligned}
& \text {. } \\
& \text { 组: : }
\end{aligned}
$$

نشار گاز

$$
1 \mathrm{~atm}=760 \mathrm{torr}
$$

 در شكل

بـ جيوه منتقل كند.

 بابد از فشثار جوّ كم كرد.

 فئار رابطه معكوبي دارد:

$$
V \propto \frac{1}{P}
$$

با استفاده از ثابت kمىتوان تناسب را به تساوى تبديل كرد:

$$
\begin{equation*}
V=\frac{k}{P} \quad \vdots P V=k \tag{1-10}
\end{equation*}
$$

ترارمیىدهيم:

$$
? \mathrm{~atm}=5.00 \mathrm{~atm}\left(\frac{75.0 \mathrm{~L}}{30.0 \mathrm{~L}}\right)=12.5 \mathrm{~atm}
$$

روش ديگُري براى حل كردن ايـن مسئله وجـود دارد كـه در آن ازلز
 بايانى حل میكنيم:

$$
P_{f}=P_{i}\left(\frac{V_{f}}{V_{f}}\right)=5.00 \mathrm{~atm}\left(\frac{75.0 \mathrm{~L}}{30.0 \mathrm{~L}}\right)=12.5 \mathrm{~atm}
$$

را -

 كيلرساك

 1 mL KV Tr mL
 خر خArmL و به off mL

 S فقط آن را زاز

 سلسيوس (با نماد t) هی تو انا بـ دست آَوزد.

$$
T=t+273
$$

[^10]2. Joseph Gay - Lussac

حجم ثاياتى كُاز را با تصحيح حجم آَغازين در اثر تغيير فشار مسىتران
 يكسان است:

$$
2 \mathrm{~mL}=(360 \mathrm{~mL})\left(ت \mathrm{H}^{-}\right)
$$

ضرايب تصحيح با ضرايب تبلديل بكسـان نـيستند. ضـريب تصصحيح،

مسئله به دست آورد:
($1.000 \mathrm{~atm} / 0.750 \mathrm{~atm}$)
(0.750 atm $/ 1.000 \mathrm{~atm})$
راستى، كدام ضريب را بايـد بي كار ببر يم؟ حرن نُشـار از از

در نتّبجه،

$$
? \mathrm{~mL}=360 . \mathrm{mL}\left(\frac{0.750 \mathrm{~atm}}{1.000 \mathrm{~atm}}\right)=270 . \mathrm{mL}
$$

در تُتيجه،

$$
\begin{equation*}
P_{f} V_{f}=P_{i} V_{i} \tag{r-10}
\end{equation*}
$$

$$
V_{f}=V_{i}\left(\frac{P_{i}}{P_{f}}\right)=360 . \mathrm{mL}\left(\frac{0.750 \mathrm{~atm}}{1.000 \mathrm{~atm}}\right)=270 . \mathrm{mL}
$$

r-1. مثال
در دمای "
كاز با بـه دست آَوريد.

$$
\begin{aligned}
& \text { : سرإيط آغازين : } V_{i}=75.0 \mathrm{~L} \quad P_{i}=5.00 \mathrm{~atm} \quad t=0^{\circ} \mathrm{C} \\
& \text { 隹 : } V_{f}=30.0 \mathrm{~L} \quad P_{f}=? \mathrm{~atm} \quad t=0^{\circ} \mathrm{C}
\end{aligned}
$$

فشار آغازين بايلد بـ نسبت تغيير هجم تصحمح شود. دما ثابت است، در نتيجه، تصسِع دما لازم نـيست.

$$
2 \mathrm{~atm}=(5.00 \mathrm{~atm})(\text { تصمبح })
$$

 خراهد. بود. در نتيجها، حجم بزرگ تر را در صورت كسر ضريب تصر تصخيح

در		
		+a
(K)	(${ }^{\circ} \mathrm{C}$)	(mL)
ryu	-	YYT
rve	1	YY\%
rat	1.	rar
ofs	iver	ofe

 مى توان نا صفر مطلق امتداد دادر.

$$
\begin{equation*}
T=t+273.15 \tag{4-10}
\end{equation*}
$$

 توجه، به صورت
r-1.

$$
\begin{aligned}
& \text { 俍 : } V_{i}=79.5 \mathrm{~mL} \quad i_{i}=45^{\circ} \mathrm{C} \quad T_{i}=318 \mathrm{~K} \\
& \text { : } y_{f}=? \mathrm{~mL} \quad t_{f}=0^{\circ} \mathrm{C} \quad T_{f}=273 \mathrm{~K}
\end{aligned}
$$

[^11]حجم تمام كازها، در نشار ثُابت، با دماى مطالق رابطةُ مستقيم دارد. اين

$$
V \propto T
$$

$$
V=k^{\prime} T
$$

 نمونهاي از يكاكاز، حجم آن را دوبرابر خو اهدكيرد.

ح

$$
\begin{array}{llll}
\text { : شـرايط أغانـين : } V_{i}=10.0 \mathrm{~L} & P_{i}=2.00 \mathrm{~atm} & T_{i}=273 \mathrm{~K} \\
\text { : } V_{f}=10.0 \mathrm{~L} & P_{f}=2.50 \mathrm{~atm} & T_{f}=? \mathrm{~K}
\end{array}
$$

به علت ثابت بودن حجم، نيازى به تصحيح آن نيست. در مسائلّ مربوط به كازها بايد تمام دماها بر خسب كلرين باشنـند. دز نتيجه،
? K = (273 K) (تصححح خـُـبار)

$$
? \mathrm{~K}=\mathrm{K}\left(\frac{2.50 \mathrm{~atm}}{2.00 \mathrm{~atm}}\right)=341 \mathrm{~K}
$$

بناسخ مسئله را مىتو اخن به درجئ سلسبرس تبدبل كر :

$$
t=T-273
$$

$$
=341 \mathrm{~K}-273 \mathrm{~K}=68^{\circ} \mathrm{C}
$$

$$
\begin{equation*}
\frac{P_{f}}{T_{S}}=\frac{P_{i}}{T_{i}} \tag{v-10}
\end{equation*}
$$

با حل كردن معادلة ه ا - V برای TT ، داريم:

$$
T_{f}=T_{i}\left(\frac{P_{f}}{P_{i}}\right)=273 \mathrm{~K}\left(\frac{2.50 \mathrm{~atm}}{2.00 \mathrm{~atm}}\right)=341 \mathrm{~K}
$$

ويليام تامسرن، لرد كلوين (IQ.V اAYY)

بنابراين،

$$
? \mathrm{~mL}=(79.5 \mathrm{~mL})\left(\mathrm{L}_{2} \mathrm{C}_{2} \mathrm{~F} \cdot \mathrm{~F}\right)
$$

 $7 \mathrm{~mL}=79.5 \mathrm{~mL}\left(\frac{273 \mathrm{~K}}{318 \mathrm{~K}}\right)=68.2 \mathrm{~mL}$
 ، در نتيج $\frac{V_{f}}{T_{f}}=\frac{V_{i}}{T_{i}}$
اكر معادله را برايى حجم پايانى سل كنيم، خو اهيم داشت: $\mathrm{V}_{f}=V_{i}\left(\frac{T_{f}}{T_{i}}\right)=79.5 \mathrm{~mL}\left(\frac{273 \mathrm{~K}}{318 \mathrm{~K}}\right)=68.2 \mathrm{~mL}$

。

$P \propto T$ $P=K^{\prime \prime} T$

 مقياسى برايى دماى آن كاز استا سانِ ساحت.
مثال • - - م

ظــرفى 10 اليـترى در فشـار

خو اهد رسيد!

جوز، و دما بر حسب كلوين بيان شود. مقادير R بـا سـاير واحـذها، در

تتسيم بر وزن مرلكولى گاز، M، است:

$$
n=\frac{g}{M}
$$

با قاراردادن (g/M) به جاي nدر معادلّ

$$
P V=\left(\frac{g}{M}\right) R T
$$

0 - 10 مثال
 نمونه را در STP حساب كنيد.

روشن ضريب تصحتح را مى تموان برائ حل اين مسئله به كار برد:

 رإطئُ معكوس دارند:
$? \mathrm{~mL}=462 \mathrm{~mL}\left(\frac{273 \mathrm{~K}}{308 \mathrm{~K}}\right)\left(\frac{1.15 \mathrm{~atm}}{1.00 \mathrm{~atm}}\right)=471 \mathrm{~mL}$ اين مسئله را الز مسعادلّ
 نيز ثابت مى باشبد،

$$
\begin{equation*}
\frac{P_{f} V_{f}}{T_{f}}=\frac{P_{i} V_{i}}{T_{i}} \tag{11-10}
\end{equation*}
$$

$V_{f}=V_{i}\left(\frac{P_{i}}{P_{f}}\right)\left(\frac{T_{f}}{T_{i}}\right)=462 \mathrm{~mL}\left(\frac{1.15 \mathrm{~atm}}{1.00 \mathrm{~atm}}\right)\left(\frac{273 \mathrm{~K}}{308 \mathrm{~K}}\right)=471 \mathrm{~mL}$
عثال •1. -9
$10,0 \mathrm{~L} \mathrm{H}_{\mathrm{j}} 100^{\circ} \mathrm{C}$ ى
خواهد رسيد؟

 تعداد مول مهاى كاز باتملـ،

$$
V \propto n
$$

$$
\begin{equation*}
V=k^{\prime \prime \prime} n \tag{A-10}
\end{equation*}
$$

 مستْيم دارد:

$$
V \propto \frac{1}{P} \quad V \propto T \quad V \nsim n
$$

بنابراين،

$$
V \propto\left(\frac{1}{P}\right)(T)(n)
$$

 اين مورد، هدد ثابت رابـا R مشخص مى كنيم: $V=R\left(\frac{1}{P}\right)(T)(n)$
با تغيير آرايش معادلةً بالا ميتو انْ به معادله (10 ـ 9) رسيه:

$$
\begin{equation*}
P V=n R T \tag{9-10}
\end{equation*}
$$

$$
R=\frac{P V}{n T}
$$

با قرار دادن دادهما براي ححهم مولى STP يك كاز ايدهآله، داريم:

$$
R=\frac{(1 \mathrm{~atm})(22.4136 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})}=0.082056 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol})
$$

هنغام استفاده ازز اين مقدار R، حجم بايد بر حـب لِيتر، فشار بر حسب
$(2.00 \mathrm{~atm}) V=\left(\frac{10.0 \mathrm{~g}}{44.0 \mathrm{~g} / \mathrm{mol}}\right)[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol})](300 . \mathrm{K})$ $V=2.80 \mathrm{~L}$

9-1. 9
得

ل

$$
P V=\left(\frac{g}{M}\right) R T \quad(1 \cdot-1 \cdot)
$$

تا هـ كالم، بِنى

وز

$$
\begin{aligned}
\frac{g}{V} & =\frac{(1.15 \mathrm{~atm})(17.0 \mathrm{~g} / \mathrm{mol})}{[0.0821 \mathrm{Latm} /(\mathrm{K} . \mathrm{mol})](373 \mathrm{~K})} \\
& =0.638 \mathrm{~g} / \mathrm{L}
\end{aligned}
$$

مثال 10-10

 بيدست آوريد.
j

$$
P V=\left(\frac{g}{M}\right) R T
$$

$(0.948 \mathrm{~atm})(1.00 \mathrm{~L})=\left(\frac{1.50 \mathrm{~g}}{M}\right)[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol})](323 \mathrm{~K})$ $M=42.0 \mathrm{~g} / \mathrm{mol}$

 (FT, $/ / /$ /F, 0) $=r$
 . $\mathrm{C}_{\mathrm{F}} \mathrm{H}_{8}$

J
$P=? \mathrm{~atm} \quad V=10.0 \mathrm{~L} \quad n=0.250 \mathrm{~mol} \quad T=373 \mathrm{~K}$ مسائلى كه شـرايط يكدست داشته باششند بـ آسانى با قرار دادن مقادير در هعادلى حالت، حل مییشوند:

$$
\begin{align*}
P V & =n R T \tag{4-10}\\
P(10.0 \mathrm{~L}) & =(0.250 \mathrm{~mol})[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol})](373 \mathrm{~K}) \\
P & =0.766 \mathrm{~atm}
\end{align*}
$$

Y

j

$$
\begin{equation*}
P V=n R T \tag{9-10}
\end{equation*}
$$

$$
\begin{aligned}
(1.50 \mathrm{~atm})(0.500 \mathrm{~L}) & =n[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol})](323 \mathrm{~K}) \\
n & =0.0283 \mathrm{~mol}
\end{aligned}
$$

A-1. مثال حهم

$$
P V=\left(\frac{g}{M}\right) R T
$$

0 - واحد صر رت و مخرج كسر، به علت يكسان بوحن، حذف
 تصصحيح شده المت

$$
t=T-Y Y, 10
$$

ب - روش نرهولى
 تمرنه هسعينى از يكى Sاز، n نـيز مـانتد R تـابت است. در نتيجه، , $P_{j} V_{i} / T_{i}=n R$, $P_{f} V_{f} / T_{f}=n R$

$$
\frac{P_{f} V_{f}}{T_{f}}=\frac{P_{i} V_{i}}{T_{i}}
$$

 ك
 با يان كار محاسبد خوراهد شد:

$$
t=T-r \vee r, 10
$$

روش حلكردن مسائلى كه شامل تغيير حاللت يكىگاز معين هستند

b $\left(T_{f} ، P_{f} ، V_{f}\right)$ ا آ مشخخص كنيل.

 قبول است.

الف - روش ضريب تبليل

 آغازين رادر ضرايب تصحيح ضربـ كنيلد تا تغيير مربو ط به دو متغير ديگر نيز تصسحيح شود.
F F ـ هو يكى از ضرايب تصنحيح را بهصورت جلاگاكانه به كاربيريد. ضريب تصحيح؛ شامل كسر حـاصل از تـقنسيم مـقادير آفـازين و
 صورت ضريب و ديخُرى در مخرج قرار داده مى شود. باياين توتيب؛

 كسر رناسب برایى تصحيح را انتخاب كنيذ.

ث ـ نـــيروى جـاذبئ بـين هـولكولهاى گاز، نـاجيز و قـابل
جشميوشیى است.

 قانون شارل و قانون آمونتونه، خــواص كـازها را بـه تـغييرات دمـا

 دماى مطلت نيز، به طور نظرى، صغر است.

1. Daniel Bernoulli	2. Krönig
3. Clausius	4. Maxwell
5. Boltzmann	6. Postulates

نظرية جنبشى گُازها، الكُويى براي تبيين نظم و ترتيب مشـاهده شـده

 ديوارةٌ ظرفـ است، تبيين كرد. توضيح برنولمى، الولين و سادهترين تغسير

در اين عبارت، "uميانگين مجذرور تمام سرعتهاى مو مولكولى است.
 با با است با:

$$
\begin{aligned}
& \text { مساحت } \\
& P=\frac{\frac{N m u^{2}}{3 a}}{a^{2}}=\frac{N m u^{2}}{3 a^{3}}
\end{aligned}
$$

 $P=\frac{N m u^{2}}{3 V} \quad$ L $\quad P V=\frac{1}{3} N m u^{2}(1 r-1 \cdot)$

معادله را به صورت زير میتوان نوشت:

$$
P V=\left(\frac{2}{3} N\right)\left(\frac{1}{2} m u^{2}\right)
$$

 مبلكولى برابر است با:

$$
\begin{equation*}
K E=\frac{1}{2} m u^{2} \tag{10-10}
\end{equation*}
$$

$$
\begin{equation*}
P V=\frac{2}{3} N(K E) \tag{19-10}
\end{equation*}
$$

 مستقــم دارد، در نتيجه

$$
N(K E) \propto n T
$$

قرار دادن اين عبارت در معادلهه - If - م متضمن وارد كـيردن يكـ ثابت

است با ثابت كازها، يعنى R، در نتيجه،

$$
\begin{equation*}
P V=n R T \tag{9-10}
\end{equation*}
$$

 برخوردها جبران مىشود. قانون شارل بيانگر اين وضعيت است.

 خر اهدل شد با:

$$
V=a^{3} \mathrm{~cm}^{3}
$$

 در جهت محور y، و يكى سوم در جهت محور z

 جهتهاي x، yو zهمبارز است.

اندازئ حركت، حامل ضرب

 حركت هر مولكول در هر ثانيه برابر است با،

$$
\left(\frac{u}{2 a}\right) 2 m u=\frac{m u^{2}}{a}
$$

تغيير كل اندازٔ حركت (نيرو) برانى تمام مولكولهمايى كه در يكى ثانيه با اين ديوأره برخررد میىتنتل، عبارت است ان: $\frac{N}{3} \times \frac{m u^{2}}{a}$

 ساوى تمداد يكساتي مور لكورا، x، است.

11-1. 11 مثال

$$
\begin{aligned}
& 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
$$

(الفت) زإبطةٌ بين ححمب

> شيمهيابيم داده شـده اسست.

$$
2 \mathrm{LC}_{2} \mathrm{H}_{6} \approx 7 \mathrm{LO}_{2}
$$

اين رابطه را براى بهدست آوردن ضريب تبديل به كاز می بريمب:
? $\mathrm{LO}_{2}=15.0 \mathrm{~L} \mathrm{C}_{2} \mathrm{H}_{6}\left(\frac{7 \mathrm{~L} \mathrm{O}_{2}}{2 \mathrm{LC}_{2} \mathrm{H}_{6}}\right)=52.5 \mathrm{~L} \mathrm{O}_{2}$
(ب) در اين هوردم، رابطه زيبر را داريم:

$$
2 \mathrm{LC}_{2} \mathrm{H}_{6} \approx 4 \mathrm{LCO}_{2}
$$

بنابراين،
? $\mathrm{LCO}_{2}=15.0 \mathrm{LC}_{2} \mathrm{H}_{6}\left(\frac{4 \mathrm{~L} \mathrm{CO}_{2}}{2 \mathrm{LC}_{2} \mathrm{H}_{6}}\right)=30.0 \mathrm{~L} \mathrm{CO}_{2}$

1. Gay - Lussac's law of combining volumes
2. Amedeo Avogadro

$$
\begin{aligned}
& \text { 隹 } \\
& \text { براى مثال، }
\end{aligned}
$$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

 هو جود دز حجم هعيني از
 , H_{r} ى

 شـده، دو برابير حمجم (g)

 مو لكول لمايى

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

نسبت هجمى اين واكتشَ برابير است با:

10; 1 - 1 。

1*
.

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

هorn
$J=$

$$
1 \mathrm{~mol} \mathrm{NaN}_{3}=65.0 \mathrm{~g} \mathrm{NaN}_{3}
$$

$$
? \mathrm{~mol} \mathrm{NaN}_{3}=0.400 \mathrm{~g} \mathrm{NaN}_{3}\left(\frac{1 \mathrm{~mol} \mathrm{NaN}_{3}}{65.0 \mathrm{~g} \mathrm{NaN}_{3}}\right)
$$

$$
=0.00615 \mathrm{~mol} \mathrm{NaN}_{3}
$$

از معادلةٌ شبهياييى بالا، ميتوران تتيجهه كرفد
$2 \mathrm{~mol} \mathrm{NaN}_{3} \approx=3 \mathrm{~mol} \mathrm{~N}$
بـابنائن،

$$
P V=n R T
$$

$(0.980 \mathrm{~atm}) V=(0.00923 \mathrm{~mol})[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol})](298 \mathrm{~K})$

$$
V=0.230 \mathrm{~L}
$$

10-10 مثال

$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \longrightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$

لo
إِــا : 0) चु

$$
\begin{aligned}
& ? \mathrm{~mol} \mathrm{~N}=0.00615 \mathrm{~mol} \mathrm{NaN}_{3}\left(\frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NaN}_{3}}\right) \\
& =0.00923 \mathrm{~mol} \mathrm{~N}_{2} \\
& \text { ح حجم : }
\end{aligned}
$$

 فشار يكسان اش

 ز

 نيز هـى تو ان انتجام داد.

مثالJ • -

ل
وز
$1 \mathrm{~mol} \mathrm{~F}_{2}=38.0 \mathrm{~g} \mathrm{~F}_{2}$

$$
1 \mathrm{~mol} \mathrm{~F}_{2}=22.4 \mathrm{~L} \mathrm{~F}_{2}
$$

بنابراين،
$? \mathrm{~g} \mathrm{~F}_{2}=1 \mathrm{LF}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{~F}_{2}}{22.4 \mathrm{~L} \mathrm{~F}_{2}}\right)\left(\frac{38.0 \mathrm{~g} \mathrm{~F}_{2}}{1 \mathrm{~mol} \mathrm{~F}_{2}}\right)=1.70 \mathrm{~g} \mathrm{~F}_{2}$
.

R وزن مولكولى با چڭالى STP ja

$$
? \mathrm{~g}=1 \mathrm{~mol}\left(\frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}\right)\left(\frac{1.34 \mathrm{~g}}{1 \mathrm{~L}}\right)=30.0 \mathrm{~g}
$$

C

 r r \& L . به كارگرفت (مثالهاي $P V=n R T$

$$
\begin{aligned}
& \text { توع مسانْلى كه با آنها روبه رو مى ششويم به قرار زير استا: } \\
& \text { ا } 1
\end{aligned}
$$

شلده است. از ثانون تركيب حجمى گيلوساك استفاده كـنيد (مـثال
.

$$
\begin{aligned}
& \text { مسنثله سـازگار شور } 2 . \\
& \text { ال r r ج } \\
& \text { الف ـ عدهُ مولها }
\end{aligned}
$$

شده است .

$$
\begin{aligned}
1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} & =159.6 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3} \\
? \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} & =1.00 \times 10^{3} \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}\left(\frac{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{159.6 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}}\right) \\
& =6.27 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
\end{aligned}
$$

از معادلدٌ واكنش داريه:

$$
1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \approx 3 \mathrm{~mol} \mathrm{CO}
$$

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{CO} & =6.27 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}\left(\frac{3 \mathrm{~mol} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}\right) \\
& =18.8 \mathrm{~mol} \mathrm{CO}
\end{aligned}
$$

(
(STP,

$$
1 \mathrm{~mol} \mathrm{CO}=22.4 \mathrm{~L} \mathrm{CO}
$$

بنابراين،
$? \mathrm{LCO}=18.8 \mathrm{~mol} \mathrm{CO}\left(\frac{22.4 \mathrm{~L} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{CO}}\right)=421 \mathrm{~L} \mathrm{CO}$
مرحلة آخر را مىتوان با استفاده از معادلة حالت نبز حل كرد:

$$
P V=n R T
$$

$(1 \mathrm{~atm}) V=(18.8 \mathrm{~mol})[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mole})](273 \mathrm{~K})$

$$
V=421 \mathrm{~L}
$$

19-10 مثال

برای توليد معادلٌّ واكنشت به قرال زير است:

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

جدرل ه - - ب فشار بخار آب

 جيزئى A برابر يكى ينجم فشار كل، و فشار جزئى B برابر با جهارينجم فشاركل است.

 مىتوان بهدست آورد.

 فيا

ك، اكُر به تنهايـى در آن ظرف برد، وارد مىكرد.
 مولهاى كاز در مخلوط برابر با با

$$
X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}=\frac{n_{\mathrm{A}}}{n_{\text {loatal }}}
$$

 هى شود. بنابراين فشار جزئى A برابر است با،

$$
\begin{equation*}
p_{\mathrm{A}}=\left(\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}\right) P_{\text {total }}=X_{\mathrm{A}} P_{\text {total }} \tag{19-10}
\end{equation*}
$$

نشار جزئى B برابر با كسـر مولى B ضرب در فشار كلى است:

$$
p_{\mathrm{B}}=\left(\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{R}}}\right) P_{\text {total }}=X_{\mathrm{B}} P_{\text {toata }} \quad\left(\gamma_{0}-1 \cdot\right)
$$

توجه داشته باشيد كه مجموع كسرهاى مولى برابر ا است:

$$
\begin{aligned}
X_{\mathrm{A}}+X_{\mathrm{B}} & =1 \\
\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}+\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} & =\frac{n_{\mathrm{A}}+n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}=1
\end{aligned}
$$

 ,

$$
P V=\frac{1}{3} N m u^{2} \quad(1 \Gamma-1 \cdot)
$$

 أستا : به دست

$$
P V=\frac{1}{3} M u^{2} \quad(Y-10)
$$

$$
R T=\frac{1}{3} M u^{2} \quad(Y Y-10)
$$

$$
\begin{equation*}
u=\sqrt{\frac{3 R T}{M}} \tag{r-10}
\end{equation*}
$$

$$
K E=\frac{1}{2} m u^{2}
$$

 "
 or
 S
 .

19-1.10

$$
\begin{equation*}
u=\sqrt{\frac{3 R T}{M}} \tag{الف}
\end{equation*}
$$

1. Rout - mean - square speed

1V-1.
 ر بقّر است؟

J
 نشار آغازبن اكسيرّن عبارن

$$
0.992 \mathrm{~atm}-0.028 \mathrm{~atm}=0.964 \mathrm{~atm}
$$

تسإبإن

$$
? \mathrm{~mL}=370 . \mathrm{mL}\left(\frac{0.964 \mathrm{~atm}}{1.000 \mathrm{~atm}}\right)\left(\frac{273 \mathrm{~K}}{296 \mathrm{~K}}\right)=329 \mathrm{~mL}
$$

.

$$
V_{f}=V_{i}\left(\frac{P_{i}}{P_{f}}\right)\left(\frac{T_{f}}{T_{i}}\right)=370 . \mathrm{mL}\left(\frac{0.964 \mathrm{~atm}}{1.000 \mathrm{~atm}}\right)\left(\frac{273 \mathrm{~K}}{296 \mathrm{~K}}\right)=329 \mathrm{~mL}
$$

A 1 = 10

 . \uparrow, 0 O O 1 , ro mol
 بنابراين،

$$
\begin{aligned}
P_{\mathrm{O}_{2}} & =X_{\mathrm{O}_{2}} P_{\text {toont }} \\
& =(0.112)(0.900 \mathrm{~atm}) \\
& =0.101 \mathrm{~atm}
\end{aligned}
$$

فشَار جزئى هـلمه نيز برابِب انست با:

$$
\begin{aligned}
p_{\mathrm{Hc}} & =p_{\text {total }}-p_{\mathrm{O}_{2}} \\
& =0.900 \mathrm{~atm}-0.101 \mathrm{~atm}=0.799 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
& X_{\mathrm{O}_{2}}=\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{O}_{2}}+n_{\mathrm{He}}} \\
& X_{\mathrm{O}_{2}}=\frac{1.25 \mathrm{~mol}}{(1.25+10.0) \mathrm{mol}}=\frac{1.25 \mathrm{~mol}}{11.2 \mathrm{~mol}}=0.112 \\
& \text { فـّار جزتّى Or برايو است با }
\end{aligned}
$$

براى يكا مول كاز،

$$
\begin{equation*}
K E=\frac{3 R T}{2 N} \tag{x}
\end{equation*}
$$

ميانگين انز

Yo.-10 مثالJ
 محاسبه كنيد.

$$
\begin{aligned}
K E & =\frac{3 R T}{2 N} \\
& =\frac{3[8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol})](273 \mathrm{~K})}{2\left(6.022 \times 10^{23} \mathrm{~J} / \mathrm{Jol}\right)} \\
& =5.65 \times 10^{-21} \mathrm{~J} / \mathrm{J} / \mathrm{Ji} \text {, }
\end{aligned}
$$

2

[^12]\[

$$
\begin{aligned}
& =\sqrt{\frac{3\left[8.314 \times 10^{3} \mathrm{~g} \cdot \mathrm{~m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~K} \cdot \mathrm{~mol}\right)\right](273 \mathrm{~K})}{2.016 \mathrm{~g} / \mathrm{mol}}} \\
& =1.84 \times 10^{3} \mathrm{~m} / \mathrm{s} \\
& =\sqrt{\frac{3\left[8.314 \times 10^{3} \mathrm{~g} \cdot \mathrm{~m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~K} \cdot \mathrm{~mol}\right)\right](373 \mathrm{~K})}{2.016 \mathrm{~g} / \mathrm{mol}}} \\
& =2.15 \times 10^{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$
\]

 , $4,01 \times 10^{\circ} \mathrm{mile} / \mathrm{hr} g 0^{\circ} \mathrm{C}, 24,1 r \times 10^{r}$ mile/hr

 1 .f $1 \times 10{ }^{\circ}{ }^{\circ}$. 1 atm

هـيلرورثن نامنـ.

尾

$$
P V=\frac{2}{3} N(K E)
$$

$$
K E=\frac{3 P V}{2 N}
$$

 سرعت زياد در حركت باشـند، سريعتر از مولكو لـنهايـى كه بـا بـا سـرعت

$$
\begin{equation*}
\frac{r_{\mathrm{A}}}{r_{\mathrm{B}}}=\sqrt{\frac{M_{\mathrm{B}}}{M_{\mathrm{A}}}} \tag{ra-10}
\end{equation*}
$$

 : 2 行

 كُاهام رآبه صروت زير نيز مىتو انـ توشت:

$$
\begin{equation*}
\frac{r_{\mathrm{A}}}{r_{\mathrm{B}}}=\sqrt{\frac{d_{\mathrm{B}}}{d_{\mathrm{A}}}} \tag{19-10}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{r_{\mathrm{H}_{2}}}{r_{\mathrm{O}_{2}}}=\sqrt{\frac{M_{\mathrm{O}_{2}}}{M_{\mathrm{H}_{2}}}} \\
& \frac{r_{\mathrm{H}_{2}}}{r_{\mathrm{O}_{2}}}=\sqrt{\frac{32}{2}}=\sqrt{16}=4
\end{aligned}
$$

 از اين إصل براي جها جاسازى ايزوتوبها b bايزوتوب، فقط

 خورهد برد:

$$
K E_{\mathrm{A}}=K E_{\mathrm{B}}
$$

انوزى جنبشى جسـى به جوم mكه با سرعت بار حركت باشد:

$$
K E=\frac{1}{2} m u^{2}
$$

بنابراين،

$$
K E_{\mathrm{A}}=\frac{1}{2} m_{\mathrm{A}} u_{\mathrm{A}}^{2} \quad, \quad K E_{\mathrm{B}}=\frac{1}{2} m_{\mathrm{B}} u_{\mathrm{B}}^{2}
$$

تهام هورلكولهاى كاز A (يا Bاز B)، با سرعت يكسان حركت نحو اهنـل كرد. نهـ ميانگگين است. يس خواهيم داشت:

$$
\begin{aligned}
K E_{\mathrm{A}} & =K E_{\mathrm{B}} \\
\frac{1}{2} m_{\mathrm{A}} u_{\mathrm{A}}^{2} & =\frac{1}{2} m_{\mathrm{B}} u_{\mathrm{B}}^{2}
\end{aligned}
$$

$$
\begin{equation*}
m_{A} u_{A}^{2}=m_{B} u_{\mathrm{B}}^{2} \tag{L}
\end{equation*}
$$

$$
\frac{u_{A}^{2}}{u_{\mathrm{B}}^{2}}=\frac{m_{\mathrm{B}}}{m_{\mathrm{A}}} \quad \text { با تغيير آرايش معادله، داريبم. }
$$

$$
\frac{u_{\mathrm{A}}}{u_{\mathrm{B}}}=\sqrt{\frac{m_{\mathrm{B}}}{m_{\mathrm{A}}}}
$$

نسبت جرمهاى مولكولى دو كاز؛ يعنى

$$
\frac{u_{\mathrm{A}}}{u_{\mathrm{B}}}=\sqrt{\frac{M_{\mathrm{B}}}{M_{\mathrm{A}}}}
$$

مشتشتصنـــد

 SPVIRT

[^13] جداسازى ايزوتوبهمال، با تبديل اورانيم طبيعى به اورانيم هيخزا فلوئوريد كه در دماى در وانع مخلوطى از از
 (متخلخل) عبور دهيم؛ مى مند. در نتيجه، غلظت
 به طور قابل ملاحظهالى صرت كيردد.

Fl-10 مثّال

 يـيداكنيد.

$$
\begin{aligned}
& \frac{r_{\mathrm{x}}}{r_{\mathrm{N}_{2}}}=0.876 \\
& \text { وزذ مولكولى N } \\
& \sqrt{\frac{M_{\mathrm{N}_{2}}}{M_{\mathrm{X}}}}=\frac{r_{\mathrm{X}}}{r_{\mathrm{N}_{2}}} \\
& \sqrt{\frac{28.0}{M_{\mathrm{x}}}}=0.876
\end{aligned}
$$

$$
\begin{aligned}
\frac{28.0}{M_{\mathrm{x}}} & =0.767 \\
M_{\mathrm{x}} & =\frac{28.0}{0.767}=36.5
\end{aligned}
$$

 براى يكـ كاز ايدهآلل، PV =

$$
\begin{equation*}
\frac{P V}{R T}=n \tag{rv-1.}
\end{equation*}
$$

 تناسب (كه ب/1 نيز جزء آن است) در نظر كـرنت و عبارت تـصحتح .

[^14]از حجمكلى است. اين عامل باعتمى شودد تا PV/RT بزرگّتر از ا شو د.

 مولكولى به صورت يكـ عامل عمده در آمدلمهاست. منحنیهاى مريوط بـه ه ($\left(\circ^{\circ}{ }^{\circ} \mathrm{C}\right)$

 ك

 نزديكتر است.
 اين دو اثر، معادلة حالت كَاز اليدمآلى را اصالاح كرد. معادلة وان در والـس ختين است:

$$
\begin{equation*}
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T \tag{5A-10}
\end{equation*}
$$

 عبارت

 مرلكر لى است.
 وجرد داشته باشلد، در آن صورت (1 -
 ($\mathrm{C} \mathrm{ClO}_{\mathrm{CO}}$

	$\begin{aligned} & 60 \\ & \left(0^{\circ} \mathrm{C}\right) \end{aligned}$
9, V^{\prime}	- 0 。
\| 4,1	- -
Y9, ${ }^{1}$	-1.
* 8 \%	1.
0980	Y.
vi, r	r.
Vr,n	H1

نشار بحراني (3tm)	 (K)	$j 15$
r, 76	0,5	He
1rs	Her	H_{5}
H, ${ }^{2}$	159.)	N_{T}
rojo	1ryo.	CO
fa, ${ }^{\text {P }}$	1075	O_{T}
+0, 9	19.jT	CH_{+}
vija	roter	CO_{5}
11100	$r \cdot 0$ ¢ $\%$	NH_{+}
Y Y \% , V	gry, ${ }^{\text {r }}$	$\mathrm{H}_{T} \mathrm{O}$

 ,السى استفاده شـده است.

1. Excluded volume
2. Critical tempcrature 3. Critical pressare 4. Joule - Thomson effect

 بدست آورد.

 هولكول (

$$
\begin{equation*}
b=4 N\left(\frac{4}{3} \pi r^{3}\right) \tag{4}
\end{equation*}
$$

 سرانجام با سرد كردن و تراكم يى در بیى هو الى مايع توليد میشّود.

 تامسرون (لرو كلوين) هطالعه شد. مايع شُدن هوا بهاين ترتيب صورت

 جوّ استاءدالرد (

Solen
مايعكردن بك كاز Critical temperature
 Dalton's law of partial pressures

 Gay - Lussac's law of combining volumes

 Graham's low of effusion
 نسبت معكرس دارد. Ideal gas constant, R ار Y - I.

[^15] (ب) atmosphere, atm . 1 atmi $=V 90$ torr اهصل آووكّادرو (بختّ Avogadro's principle路

 Boyl's law
 Charles' Iaw با (ir - 1 . ${ }^{\text {Compressibility factor }}$

S．Pascal نيو نون（كه برابر با ch نشار（بتش و Pressure Root－mean square speed
 2 Standard tamperature and pressure，STP \therefore atm（ At ） （ \wedge－ 10 （ 10 STP molar volume

 جيون بـ الرتفاع （ $1 T$－ 1 ．
 ك به حساب آمدماند．
 P قاثون كاز ايلدآل（بختّ Ideal gas law ，

 ．نظر Kinetic theory of gases كا تـوزيع مـاكســول－بـولتزمان Maxwell－Boltzmann distribution

يو Mean free path
 كسر مولى، صولى جزئى（بختّن Mole fraction，X
 نشار جزئى（．）Partial pressure

路
 （100atm
名 10 ـ 10

قانون كاز ايلدهآل

Los	مول	－	فشار
T	A	V	P
$100{ }^{\circ} \mathrm{C}$	$1 \mathrm{D} \cdot \mathrm{mol}$	－	$r_{\text {foo atm }}$
10.0 K	－	$1,00 \mathrm{~L}$	－j90．atm
－	－$\gamma=1.2 \mathrm{~mol}$	0.00 mL	F， F 0 atm
V0 ${ }^{\circ} \mathrm{C}$	$\mathrm{r}, \mathrm{j} \cdot \mathrm{mol}$	12 TOL	－

6.0	dor	\cdots	فشار
T	n	v	P
$14_{0}^{\circ} \mathrm{C}$	a， 90.0 mol	－	$\cdots 000 \mathrm{~atm}$
$40^{\circ} \mathrm{C}$	－	rormL	$1,0 \mathrm{~atm}$
$r_{0}{ }^{\circ} \mathrm{C}$	r remmal	$\mathrm{F}_{0}, \mathrm{l}$	－
－	$r .09 \mathrm{~mol}$	Y，Y\＆L	$r ¢, r \operatorname{atm}$

مسائل＂

توانين كًازهاي ساده
＂ 1 － （ج）تانون آمونتون． 10 1 ．

 PV（د）（ ） نسّبت به V Vر دماي ثابتا

㢄 I ا 10

 حجه Y，YOL L Tقدر الست؟ ． 10 ـ

 （10 10

 كا
 در صورتى كه إين ظران سربسته را تا دمالي ر

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{~g})
$$

 مورت میئيرده
$2 \mathrm{NF}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow 6 \mathrm{HF}(\mathrm{g})+\mathrm{NO}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})$

 （ب）（ب）：

 ر 0 ：

 STP $\mathrm{N}_{\mathrm{r}} \mathrm{O}(\mathrm{g})$ g تعيين كنيد． ．
 در和 ．
俍
 1 示（3）性（1）

热

盅

استوكيو تترى و هتادير ححمى گازهما
原 ＂＂

 ＋1－1 م－م

 ثولمِ $\mathrm{Al}(\mathrm{OH})_{+}(\mathrm{B})$ $T 0^{\circ} \mathrm{C}, \dot{\sim}$
 U足 1
 نيونه

 Y $00^{\circ} \mathrm{C}$ C f＝

 C
 Conl

 ر）با

浣和
.

قانون تركيب حجمى گیلو ساك و اصل آووگادرو
 بلهسورت تحا \therefore ：
$2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCN}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
برإي تهـي

 ， $\mathrm{O}_{\mathrm{Y}}(\mathrm{g})$（

 ．
 ，ترئ
 UL ك ك

 ）
 \therefore－ام

 و فــار أَن
 －
 §un
隹
 آلن

 كه اين ندونةٌ كاز در

 $9100 \mathrm{~K}, N_{r}(\mathrm{~g})$（ 10 O．0．K
 §
 fent $\mathrm{F}_{\mathrm{Y}}(\mathrm{g}) \mathrm{S}$ ） S, C ． SLت － 10 مقايسس كنيد． （ 9 F－ا 10 ．
 گاز O（g）الست O 10
 ．

 ا اكر حم $V_{0}=1$ ．鱽

ا $\mathrm{La}(\mathrm{OH})_{\mu}(\mathrm{s})$ ， $\mathrm{C}_{\gamma} \mathrm{H}_{Y}(\mathrm{~g})$

 H ，C براي سوختز \＆\＆＿ا 10

摩 （ 10 爵

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Mg}^{2+}(\mathrm{aq}) \\
& 2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Al}^{3}(\mathrm{aq})
\end{aligned}
$$

$H_{Y}{ }^{\text {l }}$

 به دست هي دهنـل：

$$
\begin{gathered}
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Zn}^{2+}(\mathrm{aq}) \\
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Al}^{3+}(\mathrm{aq})
\end{gathered}
$$

Hr الز واز

قانون فشار جزئى دالتون

． 1 ．
共

 ترتيب،

和
 j ${ }^{\text {F }}$; تُجزبة (S

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

از از سوتخ

 :

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

 Oحمب

 $j \mathrm{NO}_{\gamma}(\mathrm{g}), \mathrm{N}_{\gamma} \mathrm{O}_{\gamma}(\mathrm{g})$ (g)
 NK - ا.

जn

 O VO . 1 .

 مقايسد كنيد.

 مثايسه كنبن.
 : (ب) در ا

ما يوات و حاملاتات

 ال 11

 CH ${ }^{\text {C/ }}$

(ز)

 محدودتر از سالت كازي استي.

 .

كـتـاور دو قطبى و اتمى ثى كردد.

 براى

1. London forces (dispersion forces)

 צإز

3. Instantaneous dipoles

شیكل (NF

 VII A g，VIA

 ريبرند هيلرورزنى قرى، دو تهيز لازم است．

 كو كمتي از

جلول 1 1－1 انترزى جاذبه بين مولكرلى در برخى بلورهاي بولكر لىى س

ا＇الرّ					
ساينوب （K）	رمایجرش （K）			 （D）	بر／
V^{*}	Ar	－．．．．4	A，VF	－，إ	co
YYY	rra	－． rO_{0}	rvis	－ris	HI
1so	r．9	－． 94	11，9	－JVA	HBr
101	IAA	「ア「＊＊＊	198	1，4	HCl
190	rf．	$1 \mathrm{H} \mathrm{T}^{*}$	lify	1， Fa_{4}	NH_{w}
ryt	rrr	r9，${ }^{\text {\％}}$	9，	1 ，AF ${ }^{\text {F }}$	$\mathrm{H}_{\mathrm{Y}} \mathrm{O}$

 －الكترونگاتيوى

 HI（

 هو لكولهالى NH

 است．ســــرى

شـك

(بخش

 جامد است

 را به خرد مىكيريند.

 هيلدروزني بهازإي هر مور موكول

هيدروثنى آماده است.

هيدروثنى موجود در بخن.

 ج-

$$
\mathrm{H}_{Y} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{Y} \mathrm{O}(\underline{g}) \quad \Delta H_{\nu}=+\psi \mu, \wedge \mathrm{kJ}
$$

 مايع از يكديگ, قابل تشخيص نيستيتند.

 آب در فشار

كوزه خنكـ ميكردد.

$$
\mathrm{H}_{Y} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{Y} \mathrm{O}(\mathrm{~g})
$$

 سرعت تراكمو تبتير برابير مشـوند.

 به دماى بحرانى آن مادّه مربوط ساختى. در دماى بحراني فشـار بخار با

ΔH_{v}	t_{b}		
آنتالِّ تبهير	داكى جوش	نرمول	مايع
(kl/mol)	(${ }^{\circ} \mathrm{C}$)		
Ho, Y	1000°	$\mathrm{H}_{\mathrm{r}} \mathrm{O}$	آب-
r_{0}, λ	10, 1	$\mathrm{C}_{8} \mathrm{H}_{9}$	بنزن
$r_{1,9}$	$v \wedge, 0$	$\mathrm{C}_{\mathrm{Y}} \mathrm{H}_{6} \mathrm{OH}$	اتيل\|
rojo	ve, ${ }^{\text {r }}$	CCl_{4}	كربن تتراكلريد
$r a, r$	91,5	$\mathrm{CHCl}_{\mathbf{T}}$	كلروفرم
18, ${ }^{\circ}$	44,9	$\left(\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\omega}\right)_{\mathrm{r}} \mathrm{O}$	د دكآيل انر

رسادله كلازيوس -كلإيبرون

$$
\begin{equation*}
\log p=-\frac{\Delta H_{v}}{2.303 R T}+C \tag{1-11}
\end{equation*}
$$

 ايدهآل] (K.mol)

 معادلةً بسيار مفيدى را بهصورت زير بهدست آوريمز:

$$
\begin{align*}
& T_{2} \jmath:: \log p_{2}=-\frac{\Delta H_{v}}{2.303 R}\left(\frac{1}{T_{2}}\right)+C \tag{r-11}\\
& T_{1} \jmath: \log p_{1}=-\frac{\Delta H_{v}}{2 \cdot 303 R}\left(\frac{1}{T_{1}}\right)+C
\end{align*}
$$

باكم كردن معادلむ 11 - باز از 11 - با داريم:

$$
\log p_{2}-\log p_{1}=-\frac{\Delta H_{0}}{2.303 R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \quad(\uparrow-11)
$$

كه قابل بازنويسى به صورت زير است:

$$
\begin{equation*}
\log \left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{\Delta H_{v}}{2.303 R}\right)\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right) \tag{0-11}
\end{equation*}
$$

1. Clausius - Clapeyron equation

2. Benoit Clapeyron
3. Rudolf Clausius

 latm
 جرش نرشالـ استال (VA, $0^{\circ} \mathrm{C}$) (

 فشار، آب در فشار جوّ در ارتفاع

 همالن

بحرانى آن ماده به صغر مىرسد.

$$
\begin{align*}
\log \left(\frac{p_{2}}{p_{1}}\right) & =\left(\frac{\Delta H_{v}}{2.303 R}\right)\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right) \tag{0-11}\\
\log \left(\frac{1.000 \mathrm{~atm}}{0.695 \mathrm{~atm}}\right) & =\left(\frac{4.07 \times 10^{4} \mathrm{~J} / \mathrm{mol}}{(2.303)[8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol})]}\right)\left(\frac{373 \mathrm{~K}-T_{2}}{(373 \mathrm{~K}) T_{2}}\right)
\end{align*}
$$

$$
0.1580=2126\left(\frac{373 \mathrm{~K}-T_{2}}{(373 \mathrm{~K}) T_{2}}\right)
$$

$$
1.028 T_{2}=373 \mathrm{~K}
$$

$$
T_{2}=363 \mathrm{~K}
$$

دمای:جوش آببدرفشار

ها 11

 جاملد برقرار مىشود.
 كُردانده مى شرد تا الينكه تبلور كا كمل شود.

مثال 11-1 1

 فشار بخار كلووفرم به براى اين فاصلهُ دماينى بيدا كنيد.

$$
\left[\frac{334 \mathrm{~K}-328 \mathrm{~K}}{(328 \mathrm{~K})(334 \mathrm{~K})}\right]
$$

$$
\Delta H_{v}=29,390 \mathrm{~J} / \mathrm{mol}
$$

$$
=29.4 \mathrm{~kJ} / \mathrm{mol}
$$

r- ret rer
 بخار دمايى برابر با

مثال 11 -
 .

حل

$$
\begin{aligned}
& J \\
& \text { ، } T_{1}=Y \vee \mu \mathrm{~K} \quad p_{Y}=0, \Delta r \varphi \mathrm{~atm} \quad T_{Y}=\mu \cdot 1 \mathrm{~K} \text {, } 1 \\
& \text { : } \Delta H_{v}=r, v 9 \times 10^{*} \mathrm{~J} / \mathrm{mol} \\
& \log \left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{\Delta H_{v}}{2.303 R}\right)\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right) \\
& \log \left(\frac{0.526 \mathrm{~atm}}{p_{1}}\right)=\left(\frac{2.76 \times 10^{4} \mathrm{~J} / \mathrm{mol}}{(2.303)[8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol})]}\right) \\
& \left(\frac{301 \mathrm{~K}-273 \mathrm{~K}}{(273 \mathrm{~K})(301 \mathrm{~K})}\right) \\
& \left(\frac{0.526 \mathrm{~atm}}{p_{1}}\right)=31.0 \\
& p_{1}=0.170 \mathrm{~atm}
\end{aligned}
$$

年

 1 atm شو

1. Molar enthalpy of fussion

جدول 11 ـ ـ ب أَتْالبى ذوب مولى جاهـلات در دماي ذوب آنها

ΔH_{f}	${ }^{\text {f }}$		dula
آلتالى ذا	دهاs ذوب	نرمول	
($\mathrm{kJ} / \mathrm{mol}$)	(${ }^{\text {C }}$)		
9.9 Y	${ }^{\circ} \mathrm{O}$	$\mathrm{H}_{\mathrm{r}} \mathrm{O}$	با
9, $\boldsymbol{N}^{\prime \prime}$	0 os	$\mathrm{C}_{¢} \mathrm{H}_{¢}$	بنزن
r,so	- liver	$\mathrm{Cr}_{4} \mathrm{H}_{0} \mathrm{OH}$	اتاثيل الكىل
r, 01	-rrsa	CCl_{4}	كربن تراكريل
4, 5.	-9\% ${ }^{\text {¢ }}$	CHCl_{4}	كلروفرم
V, 9 \%	-119,	$\left(\mathrm{C}_{Y} \mathrm{H}_{0}\right)_{\mathrm{r}} \mathrm{O}$	

 r

自 " $14,4 \mathrm{r}^{\mathrm{k}} \mathrm{cm}^{+}$

 1, 1 در شكل 11 atm
 تقطة ثاققى خحط

 b

俍

 -VA, $\Delta^{\circ} \mathrm{C}$ ىloد 2

 خن

هنحنىى

 (rVr , 19 K K)

 مهكن أست دنر يكى از تو احى زير بر باشدل: - 1

ell

نيروها
 . 2 (\quad ($\because{ }^{\circ} \mathrm{C}$

 الكتريسيتهاند.

 شببكهاى رسانایى الكتر يسيتد نيستنا.

شكل

 J, r

CaF بلور بوني، فلو

جـول

LuJtise	صاص		\＃ 5	بو
$\mathrm{NaCl}, \mathrm{BaO}$ KNO_{Γ}	دهـ ＊	shantar而	د and	\％
$\frac{\mathrm{H}_{Y} \mathrm{O} \cdot \mathrm{NH}_{T}}{\mathrm{SO}_{Y}}$	 位 	－ sisus 3	｜rex	W0，
（w） AIN．SiC． 50_{r}	E.	，	4	ckers：
$\begin{gathered} \mathrm{Ag} . \mathrm{Cu} \\ \mathrm{Ne} . \mathrm{K} . \\ \mathrm{Ft} \end{gathered}$	$\because=\dot{\sim}$ ＂ 			cit

隹

 د

F - 11 مشال

 هر $1,4 \mathrm{Fg} / \mathrm{cm}^{ }$ محاسبه كنيد.

ح
. سلول واحد
 م1 $4 \approx 4.36 \times 10^{-23} \mathrm{~cm}^{3}$

از جحكّالى بلمرى، داريم،

$$
1 \mathrm{~cm}^{3} \approx \approx 8.94 \mathrm{~g} \mathrm{Ni}
$$

تعداد اتمها درو $؟_{\mathrm{c}} \mathrm{F}=58.7 \mathrm{~g} \mathrm{Ni}\left(\frac{1 \mathrm{~cm}^{3}}{8.94 \mathrm{~g} \mathrm{Ni}}\right)\left(\frac{\mathrm{F}^{-1} / 4}{4.36 \times 10^{-23} \mathrm{~cm}^{3}}\right)=6.02 \times 10^{23}$ م
مثال 11-0 0
品

$ح$ هر ضلع، سلول واحد

ساختارهاي بكعبى

شكل 11 = 19 ساخثارهاىي مكعبى

 سادهترين نوع سلول واحده، سلول واحد مكعبى (تشكل (1) - 19)

 1 (هشت كُوشه و در هر كُشه، يكى هـتم اتم).

 "

$$
\begin{align*}
& T=a \sqrt{r} \\
& r=\frac{a \sqrt{r}}{r} \tag{10-11}
\end{align*}
$$

9 - 11 مثال

 به دست آوريد؟

J
فطر مكعب سلبول واحد برابر است با،

$=(Y \mathrm{~F}, \mathrm{pm}) \sqrt{T}$
$=y * 0 \mathrm{pm}$
أين طول جههار برابر شُعأ اتمى است:
$K r=V \% 0 \mathrm{pm}$ $r=1 / \mathrm{A} 9 \mathrm{pm}$

 اشعه X كه داراى طول موج يكسان باششند، باعث تقريت آنها و توليد

واحد.
 ضرايب تبديل خرد را الز جچكالى سديم به دست مى آوريم:
$0.963 \mathrm{~g} \mathrm{Na} \approx 1 \mathrm{~cm}^{3}$
 با هدد آووگادرو است:

$$
\mathrm{Na} \mathrm{~N}^{1} 6.02 \times 10^{23}=23.0 \mathrm{~g} \mathrm{Na}
$$

حل هسئله به صورت زير است:
 مكعبی مركز بر، تنها سلول واحد مكعبى دارايى دو اتم است.

$$
\begin{equation*}
r=a / 2 \tag{9-11}
\end{equation*}
$$

 در مردد سـه كوشهـهاى قائمالزالويه،

$$
\begin{align*}
& =Y a^{\dagger} \tag{v-11}
\end{align*}
$$

اين قطر برابر با حهار شعاع استس:

$$
\begin{align*}
\psi_{r} & =a \sqrt{Y} \tag{A-11}\\
r & =a \sqrt{\lambda^{-1}}
\end{align*}
$$

 نيز برابر

$$
\begin{align*}
& \left(\begin{array}{ll}
4 \\
4 &)^{r}=a^{r}+(a \sqrt{r})^{r}
\end{array}\right. \\
& =r a^{r} \\
& \text { 解 }=a \sqrt{T} \tag{9-11}
\end{align*}
$$

اين تطر برابر با جهار شعـعاع اتمى است:

 $n=1$, r , r r, ...

$$
\begin{aligned}
& \text { V- } 11 \text { مثال }
\end{aligned}
$$

1.)
J
با قرالر دادز اطلاعات داده شـده در معادلّه براگ، ذاريمب
$n \lambda=2 d \sin \theta$
$1(229 \mathrm{pm})=2 d(0.456)$
$d=251 \mathrm{pm}$

[^16]

 اننازi
 برابر با عده: كل طول مو موجها باشدل:
$$
E F+F G=n \lambda
$$

كه در آن، nen ne صحيح است.

$$
\sin \theta=\frac{\mathrm{EF}}{d}
$$

$$
\mathrm{EF}=d \sin \theta
$$

$\mathrm{FG}=d \sin ^{\circ} \theta$

را نيز ميتوان به همين ترتيب به دست آورد، در نتيجه،

$$
\mathrm{EF}+\mathrm{FG}=2 d \sin \theta
$$

جحون EF + FG بابر با

$$
\begin{equation*}
n \lambda=2 d \sin \theta \tag{11-11}
\end{equation*}
$$

$$
\begin{aligned}
& \theta+a=90^{\circ} \\
& \text { زاوية } \\
& \theta^{\prime}+a=90^{\circ}
\end{aligned}
$$

جـدول 11 ــه ساختار بلورى فلزوات

110-10 بلورهاى يونى 10

 نيروهاى دافعيُ الكترؤاستاتيكى غلبه داشته، باثشند.

1 ا 1 ـ ا ساختار بلورى فلزات

NarO آنتى فلوئوريت

TiOr لity
 , (أنا

 متبلور مى شـود.

 تلونُوريت،

 vill 1 17-1 11

 بين آنها (نسبت (enكوس:

$$
\begin{equation*}
P E=\frac{k q_{1} q_{2}}{d} \tag{18-11}
\end{equation*}
$$

كه در آن، k

 يكى در

 Cl ${ }^{\circ}$ CSCl

 ر د Cl^{-}

 "ى

 NaCl

 تمام مواضع شبكه بلورى به وسيله يـونهانهاى

 (1A०V b IV99
 بون
 زيرا بار يون

جلول 11 ـ 9 سايختار بلورى برخي از تركيبات يونى

Jun	
$\mathrm{NH}_{+} \mathrm{I}, \mathrm{AgBr}, \mathrm{AgCl}^{\text {a }}$	
Agl . CuCl . CuBr	4,
	ثكّونويت
$\mathrm{UO}_{\gamma} \cdot \mathrm{ThO}_{r} \cdot \mathrm{ZrO}_{\gamma} \cdot \mathrm{SrCl}_{\gamma} \cdot \mathrm{BaCl}_{\gamma} \cdot \mathrm{Pb}^{\mathrm{r}+}$	
$\mathrm{Rb}^{+} \cdot \mathrm{K}^{+} \cdot \mathrm{Na}^{+} \cdot \mathrm{Li}^{+}{ }^{\text {c/ }}$	
	ركّ

1. Bertholides

2. Claude Louis Berthollet

 حجم خود را حظظ هي كند.

 نــــــت الستوكيو نترى هـنا

 بلور رابا استفاده از مطالمات بـرتو

و Crystal lattice

 (1) Dipole - dipole force

 Enthalpy of condensation

 - 11 , t - 11 Enthalpy of vaporization

 Evaporation, vaporization
 سلول واحـ مكعبى با مراكز وجزه Face - centened cubic unit cell

 (بحّ
 توهال گويئلد.
يبيوند هيلدروثنى (بتش Hydrogen bond

 تأمين شوبد. Instantaneous dipole
 تيروهاي لندن (يراكندگى). .intermolecular forces

(بوضم Interstitial postion

مناهِ

S S

r
Bertholide (i-) Body - centered cubic unit cell
 مركز ساختار. (و) Boiling point

 (بخئى Bragg equation

$$
n \dot{\lambda}=2 d \sin \theta
$$

 (V - 11 (V). تبخير مايع مربو ط مىكند:

$$
\log \left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{\Delta H_{v}}{2.303 R}\right)\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)
$$

ك ك : ΔH_{v}

11-11 بلور تنگا تين (نشوده) (بخششمهاى Closest - packed crystal

 بك يون در يك ساختار بلردى.
Crystal
 Crystal allotrops
 تمصر بلور (بخث Crystal defect

Sloرون Surface tension
 Triple point ج. Unit cell
 (نشار بخار (بخُّ Vapor pressure
 گViscosity

 (يا بازتاب) ترتوها

بن توضعهاى منظم در يكـ سـاختار بـورى. London forces, dispersion forces

 (بخشش Nonstoichiometry

 . سلول واحل مكعيى ساده (بخشّ Simple cubic unit cell
 Sublimation گُ:

كاهش (NaHSO) در آبـ

 |f 11
 . $\mathrm{H}_{T} \mathrm{CO}(2)!\mathrm{H}_{\Gamma} \mathrm{COH}(\tau)!\mathrm{H}_{T} \mathrm{NOH}(ب): \mathrm{NH}_{T}$ ($)$ (الف $\mathrm{H}_{T} \mathrm{NCH}_{Y} \mathrm{CH}_{4} \mathrm{NH}_{r}$ ، 10 - 11

 أين در تركبب هـبـبـت i, 19 , $19 . \mathrm{CHCl}_{r} 11$

$$
\stackrel{\mathrm{O}}{\mathrm{CH}_{3}-\stackrel{\|}{\mathrm{C}}-\mathrm{CH}_{3}}
$$

نسبت به هر بكى از اين بواد به صورت خخالصص بالاتر است

 (ال 11

 ر
(ب) $9: 0$)
$10^{\circ \circ \mathrm{C}}$

 برابر (Y ت - II

病 11

 اكسيردن

 استا أين تتايج را تبيبن كنيد. (11 $\left(11 \Gamma, \Delta^{\circ} \mathrm{C}\right) \mathrm{I}_{Y},\left(-V^{\circ} \mathrm{C}\right) \mathrm{Br}_{Y} \cdot\left(-1 . \mu^{\circ} \mathrm{C}\right) \mathrm{Cl}_{Y} \cdot\left(-Y \mu Y^{\circ} \mathrm{C}\right) \mathrm{F}_{Y}$ 10 ـ 11

پيوند هيلدروزنت

11 ال 11

（A－II
$. \mathrm{CaO}(g): \mathrm{CaCl}_{Y}(\rightarrow): \mathrm{Ca}(\Omega): \mathrm{Cl}_{Y} \mathrm{O}(-): \mathrm{Cl}_{Y}(ب): \mathrm{O}_{Y}$（ H ）
－ 11
： BrCl بالاترى

$$
\begin{aligned}
& \text { 㥩 - } 11
\end{aligned}
$$

بلورها

 II I I I 11
病 11

 سلول آَ لَ
 طو 11

 اتمى اين عنصر هتلدر است؟ كV＝ 11 چكالى كلسيم FA－ 11 ج 11 11

 الو 11
 ．

 ＂ 11 ＂

 XeF ${ }^{Y}$ ， هعقلر است
 جقدراست؟

 جقّلر است؟
 مولماينتركبب

俍 11
 ． 11 آنتالبى تبخير هولى اين تركيب الي جا $00^{\circ} \mathrm{C}$ KV－ 11
 I YA－II

ثمودار فاز
II 11

 ．）$\times 10^{-r}$ atm ． $1 . \mathrm{K}$ K بنار جr 11 11

 ． $1, r \times 10^{-r} \mathrm{~atm},-199^{\circ} \mathrm{C} \mathrm{J}$

 ثايت هي يابلد را توصيف كنيلد．竍 11
 （الف）در دهاى ثابت
 C 11

 （Y 11
 فشار و 11

 ج 11

انواع جاهدهاي بلورى （ 11
，ت H ， Cl^{-}

 بر هسب PbS I 11

 § $\mathrm{F} / \mathrm{cm}^{r}$ كا 4 ＝ 11

 و كاد Vo－ 11
 CdS بوحسبب＂

 ． NiS ， NaBr

 $\mathrm{MnO}, \mathrm{MgS}_{\star} \mathrm{NaI}$

ساختـارهای ناتص
 ．

度
 در نظطر بگيريد．
竍

 Na
 aحاسبه كنيـد

به طول مرج Pm م

竍 11
به طول هوت
 ．

 d d d د 11俍
 و 11

居 11

 برابر ． 91 ـ 11

بلورماى يونى

Mr－ 11 Il 11

 الــه بين يون Yr－II I 11 － 11

病 K^{+}
Yr－ 11 － 11

 r｜

 كلريد در سانتار بلورى متبلور میشود برابـر

 A 1 = 11 *

 I 11
 AY = 11 تنيير آنَ هينشوند را نام يبريد.

 الكتريكى خنئى است. فرمول اين بلور Fe Fe $\mathrm{Fe}^{\mathrm{C}+}$

هسانٌل طبقهبنلدى نشلـه
(11

 . 11
 هيتان جقـدر است؟
VV - 11

 (11 طول موج
 برابر
 مكعبى مركز بر تشكيل دمند. با استفاده از معادلات بخش

مسلولها

 لازم براى اشباع محلول، در آن وجود دازرن، رسوب ميكند.

هستند، نيروهاي بين مولكولى لـي بهطور فير عادى قوى استي

140 لوa

> وجود مى آورد. برايى يكى محلول معين، مقدار مادهُ حلشـده در مقلدار مشخصى از از

 مادء: حل شُوندهُ باقى مانده تعادل برقرار مى شـردد:

شكل با ـ ـ ا انُهُهلال بكا بلمر بونى در آب

بر ا 1 -

 هيلدروزنى باشتد:

$$
\left[\begin{array}{lllll}
\mathrm{H} & & & \\
\mathrm{O}-\mathrm{H} & \cdots & \mathrm{O} & \mathrm{O} & \cdots
\end{array} \mathrm{H}_{-} \mathrm{O}{ }^{2-}\right.
$$

 آب، بهطور ضعيضترى به يكديگر پيو بتهاند.
 مرلكرلهأى آب مىشورد؟

 آب، مولكول لهاى

 هو لكولنهاى متيل الكال بموجريد آلورند.

بُور بُرسـ.

 يون - دو تطبى مى ترا انتد نسبياً قوى بابشند.

 مولكولهاى دوتطبى و يونها باوجود مى آيلـ مرجب می شـود كه يونها

يونها (أترثى شبكه، با تغيير علامت):

$$
\mathrm{KCl}(\mathrm{~s}) \longrightarrow \mathrm{K}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \quad \Delta H=+701.2 \mathrm{~kJ}
$$ يونهاي كازي است:

$\mathrm{K}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad \Delta H=-684.1 \mathrm{~kJ}$

 مرحلنٌ دوم مىىباشد:

$$
\mathrm{KCl}(\mathrm{~s}) \longrightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad \Delta \mathrm{Hf}=+17.1 \mathrm{~kJ}
$$

 شكستن سـاختار بلورى (مرحلةٌ ب):

1. $\quad \operatorname{AgF}(\mathrm{s}) \longrightarrow \mathrm{Ag}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) \quad \Delta H=+910.9 \mathrm{~kJ}$
2. $\begin{aligned} \mathrm{Ag}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) \longrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \\ \mathrm{AgF}(\mathrm{s}) \longrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})\end{aligned} \frac{\Delta H=-931.4 \mathrm{~kJ}}{\Delta H=-20.5 \mathrm{~kJ}}$

 حالال بوشی میىناميمّ

با Y Y بار الكتريكى در يونها

 آوردن خصلت كوو الانسى تركيبات بريليم دارد (نسبت بالاى بار يون بـ

$$
\mathrm{BeCl}_{2}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

$\mathrm{K}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad \Delta H=-684.1 \mathrm{~kJ}$

ل

 بـينهايت ثابت است.

 تركيبات يونى (مانتد

 تغيير دما تغيير جنداتى نمى كندا

1. Henri Le Chatelier

 هH

 3. William Henrv

حلشُوند: :لز لـنده

جـديدي برقراركردد.

سبب افزليش اتححلال بِذ يورى مىشود.

$$
\begin{aligned}
X_{\mathrm{O}_{2}} & =\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{He}}+n_{\mathrm{O}_{2}}} \\
& =\frac{0.125 \mathrm{~mol}}{0.625 \mathrm{~mol}}=0.200
\end{aligned}
$$

「
در يكى ليتر أز محلول است است

 غلنلت هستند．در اينجا دو مثال ديگ，نيز مى آوريم．

R－IT R مثال
 （HNO）（ لازم است؟ $\mathrm{HNO}_{\mu} \% \mathrm{v}$ 。
 هجمى الز آن لازم أست

ح
（الْف）ضرايب مـورد استفاهد بـراي حـل مستئله را（بـترتيب）از ，اقعيت هاى تجربى زير بهدست مى آوريم：

$$
\text { اسبيد (}{ }^{\text {(HNO}} \text { در }
$$

Y Y ب ـ وز

وجود دارد：

$$
=45.0 \mathrm{~g} \text { g غلبط } \mathrm{HNO}_{3}
$$

مورد استفاده قرار ميدهيم.

$=31.7 \mathrm{~mL} \quad \mathrm{HNO}_{3}$
 از نيتروردزن است．

Mand

 درصد را بايد بر مبناى جرم تفسير كـرد، مغكر آنكه خـلالا آن صـربحاً متذكر شود．

 10－10 ارا بيبنيد）：

$$
X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}+n_{\mathrm{C}}+\ldots}
$$

$$
\begin{equation*}
X_{\mathrm{A}}+X_{\mathrm{B}}+x_{\mathrm{c}}+\ldots=1 \tag{باشد.}
\end{equation*}
$$

1－1ヶ 1 بشال ． كسر مولى He و و O در اين مححلول را بمدست آْوريد．

$$
? \mathrm{~mol} \mathrm{He}=2.00 \mathrm{~g} \mathrm{He}\left(\frac{1 \mathrm{~mol} \mathrm{He}}{4.00 \mathrm{~g} \mathrm{He}}\right)=0.500 \mathrm{~mol} \mathrm{He}
$$

$$
? \mathrm{~mol} \mathrm{O}_{2}=4.00 \mathrm{~g} \mathrm{O}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.0 \mathrm{~g} \mathrm{O}_{2}}\right)=0.125 \mathrm{~mol} \mathrm{O}_{2}
$$

$$
\begin{aligned}
X_{\mathrm{Ht}} & =\frac{n_{\mathrm{He}}}{n_{\mathrm{He}}+n_{\mathrm{O}_{2}}} \\
& =\frac{0.500 \mathrm{~mol}}{0.500 \mathrm{~mol}+0.125 \mathrm{~mol}}=\frac{0.500 \mathrm{~mol}}{0.625 \mathrm{~mol}}=0.800
\end{aligned}
$$

r－R

 I

$2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=1000 . \mathrm{gH}_{2} \mathrm{O}\left(\frac{12.5 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{87.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}\right)$
$=0.794 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

مهحلول نسبت بـ

مثال 1 ـ
 حجقدر است؟
\downarrow
 ： $\mathrm{H}_{4} \mathrm{O}$ ；
$? \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=1000 . \mathrm{g} \mathrm{H}_{2} \mathrm{O}\left(\frac{1 \mathrm{molH}_{2} \mathrm{O}}{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)=55.6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
بكـ محلول آبى m هـ， 1 شامل：

$$
n^{n_{0}}=1.0 \mathrm{~mol}
$$

$$
\frac{n_{\mathrm{H}_{2} \mathrm{O}}=55.6 \mathrm{~mol}}{n_{\mathrm{is}}=56.6 \mathrm{~mol}}
$$

كسرهاى مولى عبارتندـ از：

$X_{\mathrm{H}_{2} \mathrm{O}}=\frac{n_{\mathrm{H}_{2} \mathrm{O}}}{n_{\mathrm{j}}}=\frac{55.6 \mathrm{~mol}}{56.6 \mathrm{~mol}}=0.982$

مثال
مولاليتئ يكى محالول

竍

 r درصد محلول محاسبه میكتيما
 بـ

$$
? \mathrm{~mol} \mathrm{HCl}=1.00 \times 10^{3} \mathrm{~mL} .
$$

$$
=12.0 \mathrm{~mol} \mathrm{HCl}
$$

 ． 1 Ir，oM

 شـده باشلد．

居据
 （90，9g）

مبناي حجمكالّ محلول بيان شدهاند. درنتيجه بالن هالى حـجمبسنجى وا
 محلولل، مانند مولاريته با تغيير دما، اندكى تغيير مىكند.

Co 1

$$
P_{\mathbb{S}_{S}}=p_{A}+p_{B}
$$

$$
\begin{equation*}
p_{\mathrm{A}}=X_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{*} \tag{0-1Y}
\end{equation*}
$$

كه در آن دماى آزمايش است

 محلول كاهش يانته است.

[^17]1 ــ ابتدا هِّالى محلول را براي بيدا كردن جرم يـى ليـتر مـتلول بـكار میبريم.
? g g لهr

 هrلول برابر است با؛
? $\mathrm{g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=0.5000 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\left(\frac{342.3 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}\right)$

$$
=171.2 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}
$$

r

$1064 \mathrm{~g}-171 \mathrm{~g}=893 \mathrm{gH}_{2} \mathrm{O}$

looog

$$
\begin{aligned}
& \text { ? } \mathrm{mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=1000 . \mathrm{g} \mathrm{H}_{2} \mathrm{O}\left(\frac{0.5000 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{893 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right) \\
& =0.560 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \\
& \text { محلول نسبت بـ }
\end{aligned}
$$

 هر هحلول

 در يك كيلوكم مآب متمارت است.

شكال Ir

V

首 بخار اكتان در همين دما، انـ،

$$
\begin{aligned}
& \text { J }
\end{aligned}
$$

$$
\begin{aligned}
& X_{\text {- } 4 \text { He }}=\frac{3.00 \mathrm{~mol}}{8.00 \mathrm{~mol}}=0.375 \\
& X_{\text {UIES! }}=\frac{5.00 \mathrm{~mol}}{8.00 \mathrm{~mol}}=0.625
\end{aligned}
$$

$$
p_{\mathrm{B}}-X_{\mathrm{B}} P_{\mathrm{B}}^{\theta}
$$

 بخار B تخالص است.

$$
P_{j}=X_{\mathrm{A}} P_{\mathrm{A}}^{\circ}+X_{\mathrm{B}} P_{\mathrm{B}}^{\circ}
$$

درنتيجه، فشار بخار يكى محلول /يلهآل , امى توان از فشار بتار اجزا :الص، با بهحساب أوردن نسبت أجزاي هـوجود (بـرحسب مــون) در هحلو ل بهدست آورد d

شكل
برير

يعنى فشار بخار A خالص، ين ينى

n = Ir

 فشار بخار آب در $000^{\circ} \mathrm{C}$ بوابر با

$$
\begin{aligned}
P_{\mathrm{J}} & =X_{\mathrm{H}_{2} \mathrm{O}} P_{\mathrm{H}_{2} \mathrm{O}}^{\circ} \\
& =(0.982)(0.122 \mathrm{~atm})
\end{aligned}
$$

$$
=0.120 \mathrm{~atm}
$$

I ها

 متناسب است. افزايش دماى جـوش،

(.3icula

فشار بخار برابي است با،

$=0.375(0.121 \mathrm{~atm})+0.625(0.041 \mathrm{~atm})$
$=0.045 \mathrm{~atm}+0.026 \mathrm{~atm}$
$=0.071 \mathrm{~atm}$

$$
P_{J}=X_{\mathrm{A}} P_{\mathrm{A}}^{*}
$$

$$
\begin{equation*}
P_{j S}=\left(1-X_{\mathrm{B}}\right) P_{\mathrm{A}}^{\circ} \tag{9-1Y}
\end{equation*}
$$

4

$$
P_{j 5}=P_{\mathrm{A}}^{\circ}-X_{\mathrm{B}} P_{\mathrm{A}}^{\circ}
$$

$\begin{gathered} k_{\mathrm{f}} \\ \left(^{\circ} \mathrm{E} / \mathrm{m}\right) \end{gathered}$	دماي انتجهاد (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} k_{\mathrm{b}} \\ \left({ }^{\circ} \mathrm{C} / m\right) \end{gathered}$	إي جوث (${ }^{\circ} \mathrm{C}$)	dvor
-r, 90	18,9	$+r, T \cdot V$	\|14, ${ }^{(1)}$	الستيكاسيلـ
$-2,1 T$	0.0	+ r jor	A0, 1	بنّ
-ra, r	$1 \mathrm{Va}^{\text {a }}$	-	-	ك كا
-ra,	- rres	+ D, er	vest	
$-4,81$	-crje	$+r, 5 r$	ci, ${ }^{\text {r }}$	كاركرينرم
$-1,99$	-114.5	+ 1 ,	va, ${ }^{\text {r }}$	انيل الككل
$-9,10$	A0,	-	-	نُثـلن
- ! jas	- 0°	+0,015	1000°	بآ

$$
\begin{equation*}
\Delta t_{f}=m k_{f} \tag{1r-Ir}
\end{equation*}
$$

 نخواهـ آهلـ.

9-1r 1 -
r, Hog gis
 . 10%
 بنزن است:
$? \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{10}=1000 \mathrm{~g}$ ن بتر ب ب ب $\quad\left(\frac{2.40 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{10}}{75.0 \mathrm{~g}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{10}}{154 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{10}}\right)$

$$
=0.208 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{10}
$$

+ ثابت أفزايش

$$
\begin{aligned}
\Delta t_{b} & =m k_{b} \\
& =(0.208 m)\left(+2.53^{\circ} \mathrm{C} / m\right) \\
& =+0.526^{\circ} \mathrm{C}
\end{aligned}
$$

 دماى جوشن محلو ل برابر است با

$$
80.1^{\circ} \mathrm{C}+0.5^{\circ} \mathrm{C}=80.6^{\circ} \mathrm{C}
$$

Los

 ، ا ا 1 Y
 بيشبينى می شود دهاى جوش

$$
\begin{equation*}
\Delta t_{b}=m k_{b} \tag{11-1r}
\end{equation*}
$$

 (Δt_{f} حالJ

fant 9 - Ir لمكل

 أسـز

 بهدست هي

[^18]\[

$$
\begin{aligned}
\Delta t_{f} & =m k_{f} \\
& =(0.208 \mathrm{~m})\left(-5.12^{\circ} \mathrm{C} / m\right) \\
& =-1.06^{\circ} \mathrm{C}
\end{aligned}
$$
\]

 $5.5^{\circ} \mathrm{C}-1.1^{\circ} \mathrm{C}=4.4^{\circ} \mathrm{C}$

مثال 10 I I

هقدار

$$
\begin{aligned}
\Delta t_{b} & =m k_{b} \\
+0.392^{\circ} \mathrm{C} & =m\left(+5.02^{\circ} \mathrm{C} / \mathrm{m}\right) \\
m & =0.0781 \mathrm{~m}
\end{aligned}
$$

ســـس هعقدار مـاده: حـل ثــنه در

 خرّ از مادة حا حل شده است:

jow $9-11$

 براى هحلول

 برأبر باشـــد).

11-17
 صسرتىكه محالب, لـ

$$
\begin{equation*}
\pi=M R T \tag{10-1Y}
\end{equation*}
$$

$=(0.296 \mathrm{~mol} / \mathrm{L})[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol})](310 \mathrm{~K})$
$=7.53 \mathrm{~atm}$

 محلو ل در TO $10{ }^{\circ} \mathrm{C}$ حا بـدستـت آوربد.
\downarrow
 مهحلرل وا بمدست میآوريم:

$$
\pi=\left(\frac{n}{V}\right) R T
$$

2. Jacobus van't Hoff
3. Reverse Osmosis 3. Isotonic

 هو ه

$$
\pi V=n R T
$$

(ir-iv)
 حلشـده دز حهج V V (برحسب ليتر)،

موتوانانرشت،

$$
\begin{align*}
& \pi=\left(\frac{n}{V}\right) R T \tag{1+-1T}\\
& \pi=M R T \tag{10-1Y}
\end{align*}
$$

 .
初

 درنتيجه فششار بخارو،
$X_{A: ~ م ح ل و ل ى ~}^{\text {A }}$

 ك

 استر. دماى جوش HCl خالص HC

 b,rv cm L.

2. Minimum boiling azeotrope
3. Maximum boiling azeotrope

$$
\begin{aligned}
0.0167 \mathrm{~atm} & =\left(\frac{n}{1.00 \mathrm{~L}}\right)[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol})](298 \mathrm{~K}) \\
n & =6.83 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

$? \mathrm{~g}$ بر
برو تلبن

وزن مورلكرلى تقريبى برو تُتين،

 -, 0.0 با -0,0001 YV ${ }^{\circ} \mathrm{C}$ كاهس دماى انجماي -, 019 Vatm نشار اسمزي

 كه به آسانى قابل اندازن كيرى است

 تقطير باقى مبيماند.

مرلى آنَ جزء در فشار بخار آنذا در حالت خالص (

$$
\begin{equation*}
P_{J S}=X_{\mathrm{A}} P_{\mathrm{A}}^{0}+X_{\mathrm{B}} P_{\mathrm{B}}^{\circ} \tag{V-IT}
\end{equation*}
$$

 خالصصبرإير

$$
\begin{align*}
P_{j S} & =X_{\mathrm{A}} P_{\AA}^{\circ}+X_{\mathrm{B}} P_{\mathrm{B}}^{\circ} \tag{V-ir}\\
& =0.75(1.20 \mathrm{~atm})+0.25(0.40 \mathrm{~atm}) \\
& =0.90 \mathrm{~atm}+0.10 \mathrm{~atm} \\
& =1.00 \mathrm{~atm}
\end{align*}
$$

 غيرالكتروليت با همان غلظت است.

 مئلاً درموردكا هش دماى انجماند،

$$
\begin{equation*}
i=\frac{\Delta t_{f}}{m k_{f}} \tag{19-1Y}
\end{equation*}
$$

معادلة بالا ارا میترانة بهصروت زير درآّورد

$$
\Delta t_{f}=i m k_{f}
$$

 .

$$
g:=m \circ, 0 \circ 1 m
$$

$$
\Delta t_{f}=2(0.001 \mathrm{~m}) k_{f}
$$

(19ryt livaq) (آرينيوس
 هحلولنهاى آبى و معايسه آن با مقادير محاسبه شدهـ"

غلكّ			هادهٔ حل شـه.
$0,001 m$	$0{ }^{\circ} 1 \mathrm{~m}$	- $11 m$	
$0 \cdot 01 \wedge 9^{\circ} \mathrm{C}$	-1190 $0^{\circ} \mathrm{C}$	ر119 $9^{\circ} \mathrm{C}$	(1)
	-301ar	- joss	س
- jootyr	-2.rvr	- jur	
- jout99	-jorco	- $\mathrm{j}^{\text {reA }}$ A	NaCl
- ,00000A	- 0.001	- $0 \Delta 0 \wedge$	
-0.00ts	$0 \cdot 0001$	- jety	$\mathrm{K}_{\gamma} \mathrm{SO}_{*}$
- , oovfy	0 -0.Vff	- juay	-
- رoovto	-0.979	- pr.	$\mathrm{K}_{\mathrm{r}}\left[\mathrm{Fe}\left(\mathrm{CN}_{¢}\right)\right]$
- ال/x9 $9^{\circ} \mathrm{C} / \mathrm{mol}$ \%			
			حكَذارند

 اكير يك محلول آبى حاوى يونهايّى باشد جريان الكتريسيته را هـايت
 ضعيفي مى باشُدا:

$$
2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

مواد استر.

1 ـ الكتروليتهايى قوى كه، در آب، بيطور ركامل يونى هستـند.

＂ا

 كاهش الكت，

$$
\begin{align*}
& \Delta t_{f}=i m k_{f} \tag{IV-1Y}\\
& \Delta t_{b}=i m k_{b} \tag{MA-IY}\\
& \pi=i M R T \tag{19-18}
\end{align*}
$$

去少 ． با أززإي
 بـ

（M） 3 （
（N）（N） Uै ．
 ．
＊＊

dran－			
－」lm	－Jolm	$0,001 \mathrm{~m}$	
$1, A Y$	1，94	1，98	NaCl
1，YY	l jar	1，AT	$\mathrm{MgSO}_{\text {\％}}$
Y，Mr	$r, y 9$	r ，${ }^{\text {r }}$	$\mathrm{K}_{T} \mathrm{SO}_{*}$
$r, 10$	r， 54	renr	$\mathrm{K}_{\mathrm{r}}\left[\mathrm{Fe}(\mathrm{CN})_{8}\right]$

i i ． 1 Y

 و

 ل ji أنك ى

 الـ定较

 حال和思 ．（1）${ }^{2}+{ }^{2}$

 （J）（J．

 مربر ط به حالٍ خالل خالص الست

 دماى جوش، و نشار اسمزیى الست.

 Le Chatelier's principle
 ك. با آلن تغيير متابابله كند. ثابت افنزايش دمـاى Molal boiling - point elevation constant, k_{b} جوش مولى، (

 Molal freezing - point depression constant, k_{f} انحهـاد مولى،

 Raoult's law
 جزء خالص انـيت
ضر ضan't Hoff factor, i

Azeotrope

 , ا, هسجوش با داى جوش بيشيـن كويند. Colligative property

 Electrolyte

Enthalpy of hydration

 Enthalpy of solution

 قانون هنرى (بخشّ Henry's law

 Hydration

فرايشد اندحلال

 Pتص

 H IY的 IY
 $\mathrm{CH}_{T} \mathrm{Cl}_{4} \mathrm{CH}_{r} \mathrm{~F}(\underset{\sim}{(}): \mathrm{NaCl}$

或

 مー

 （ 100 mL HF－ 1 K

 جتلدر است

 ？
 9－ J－ا 1 ，با سبكلوهگزان

 $0 .{ }^{\circ} \mathrm{C}, 2, \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{OH}$ ，
 و نشار بخار اتيل الكال خالص الص
\＆

 جققدر إس

 محلر در دو Y Y＿IY
 ．برابر $10{ }^{\circ} \mathrm{C}$

 （ 11 － 1 Y آَبيوشّ آنتالِّ انحهلال ل
 آَبهوش آبی
位 － $1 \mathrm{AkJ} / \mathrm{mol}$

而

غلظت محلولوها

برابر（C，（C，HA）
 الست．هزصلد جرهى أوره

بايلد به كار برد؟
 بايد بدكار بروء؟

 بك بار برده

Abstract

 ． $1+959^{\circ} \mathrm{C} / m$ S 91 I I I X الستات

فشار اسهزيك
（C， $\mathrm{C}_{4} \mathrm{H}_{9}$ ） PEس

 جقدر است؟
 G جثلر است؟ （ الكــل در Y Y بـرابـر جقلد است

 جقلر است؟

 كـــئين در آب در
 جقـر استی

محلولهایى الكتروليت
－0，$\wedge \wedge 0^{\circ} \mathrm{C}$ C
 هقدر است؟ ，VY＿IY隹－ر $10 .{ }^{\circ} \mathrm{C}$ عحلول جقّدر است؟ بها Vr＿I Y

 Or VF＿IY

 نيروهاى جاذبئ بين يونى صرتـنـنـلر كنيل．

 تشكيل ميدهند يا بئينهنه

㫙－ 1 Y

 ．برابر V $V \Delta^{\circ} \mathrm{C}$ بَ

 محلبل حاصل در ه
 دى位 $9 \times 9^{\circ} \mathrm{C}$和俍
 د $\mathrm{C}_{1 Y} \mathrm{H}_{Y Y} \mathrm{O}_{11}$ ， froog
射 د CCI roog در OV＿Ir M $\mathrm{T}_{\mathrm{K}}{ }^{\circ} \mathrm{C}$
 آب در Y Y Y ,$د \mathrm{C}_{\mathrm{r}} \mathrm{H}_{0}(\mathrm{OH})_{r}$ ．

 P＝KX فشُـار كل

 بهترنتب
 انجحماد اين محلول تهقلدر است؟

路

ديهرى با رزj شـامل

 جكالى جيوه

هV A＿IY尾
艮

俍

 VV KV IY

 LLF LiF آر ．

 OV ＝IY

 \％
 هولالتّة：هعلول،

 M K K IY＊

IF

واكنش هاى شيميا يـي دو مسلول آبى

به كار میروند.

$\mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}+\mathrm{Na}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{Na}^{+}+\mathrm{NO}_{3}^{-}$
 (

دز محلو ل باقى

اكگر يونهاى تماشاكُ در دو طرن

$$
\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}(\mathrm{~s})
$$

معادلة بالاكلى ترين شكل معادله است. اين معادله به مـا مسى موريد از منلو طكردن محلول هر نمكا انحالول بِلذير

يونى "اكتـى") بهصورات زير خوراهد بوده،
$\mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Na}^{+}+\mathrm{NO}_{3}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$

$$
\mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{N} \cdot \mathrm{R}
$$

[^19]

 قابل اتجام در محلول آبى را موردبحث قرار ميدهيهم.

$$
\mathrm{AB}+\mathrm{CD} \longrightarrow \mathrm{AD}+\mathrm{CB}
$$

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

 OH^{-} د $\mathrm{Mg}(\mathrm{OH})_{Y}$, مبرط بـ

در جلدول با - ـ آملهه است درمورد تركيبات حاصل از كاتيونهاى زير مادق است:

 $\mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Hg}_{2}^{2+}, \mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}$ $\mathrm{Fe}^{3+}, \mathrm{Al}^{3+}, \mathrm{Cr}^{3+} \cdot \mathrm{r}^{+}$, تركيباتي كه در دماى

> تشكيل مىدهند (بحش با ـ بَ را ببينيد).

جدول

تمام بْبراتها NO_{r}^{-}

Clo

 . $\mathrm{HgBr}_{\mathrm{r}}{ }^{*}$

 $\left(\mathrm{NH}_{\psi}\right)_{r} \mathrm{CO}_{\mu}$, IA $\mathrm{IA}_{\text {, }} \mathrm{CO}_{r}^{r-}$ $\left(\mathrm{NH}_{+}\right)_{Y} \mathrm{SO}_{r}$, 1 IA ,
眝 ${ }^{-}$ $\mathrm{Ca}(\mathrm{OH})_{T}^{*} \cdot \mathrm{Sr}(\mathrm{OH})_{T}{ }^{\#} \cdot \mathrm{Ba}(\mathrm{OH})_{+} \cdot \mathrm{IA}$

هيلروكلريكا اسيد و يكى محلول سديم سولفيد را درنظر بـبريد: فرمول كامل تركيبات:

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{~S} \longrightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{NaCl}
$$

فرمولهاي يونى: $2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}+2 \mathrm{Na}^{+}+\mathrm{S}^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-}$

 نمونهاى از اين نوع واكثشت تراساختى است:

فرمول كامل تركبيات:
$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$
'ترمولمهاى يونى:

$$
\begin{aligned}
\mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+ & \mathrm{OH}^{-}
\end{aligned} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{Cl}^{-} .
$$

 OH

 بونى اين واكثشهـهـ)

تركيب نشان داده مىشو د.
 تركيب و ن نماد (s) مشخصى میشتود.

 F

 وجود دارند.

 بهكار مى بنديم:

 (هيلدروكسيدهاي مربوط به اغلب هيلروكسيلهاي ديگر، انحالالنايـاي يرند.
 د ـ آبب. آب، الكتروليت ضصعيفى است.

مثال معادلهماى يونى موازته شده براي واكتشمهاى مربوط به مخلو طشدن
 فراوردمها) را به صورت حقيقىى شـان بنريسيلد:
(الـ) $\mathrm{FeCl}_{3},\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
(ب) $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{CuCl}_{2}$
(e) $\mathrm{ZnSO}_{4}, \mathrm{Ba}(\mathrm{OH})_{2}$
(ص) $\mathrm{CaCO}_{3}, \mathrm{HNO}_{3}$
(2i) $\mathrm{Fe}^{3+}+3 \mathrm{Cl}^{-}+3 \mathrm{NH}_{4}^{+}+\mathrm{PO}_{4}^{3-} \longrightarrow$
$\mathrm{FePO}_{4}(\mathrm{~s})+3 \mathrm{NH}_{4}^{+}+3 \mathrm{Cl}^{-}$
(ب) $2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}+\mathrm{Cu}^{2+}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{N} . \mathrm{R}$.
(c) $\mathrm{Zn}^{2+}+\mathrm{SO}_{4}^{2-}+\mathrm{Ba}^{2+}+2 \mathrm{OH}^{-} \longrightarrow$

$$
\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{BaSO}_{4}(\mathrm{~s})
$$

(د) $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \longrightarrow$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Ca}^{2+}+2 \mathrm{NO}_{3}^{-}
$$

 زير توجه كنيد:

$$
\begin{aligned}
& \mathrm{CaF}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \longrightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HF}(\mathrm{~g}) \\
& 2 \mathrm{NaNO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{~g})
\end{aligned}
$$

 به اين واكنثشها، با مفهوم عدد اكسايش كه يـيمانى اختـيارى و مـفيد
 تراساختى
 4x

 (H20

地
 $2 \mathrm{Na}^{+}+\mathrm{SO}_{3}^{2-}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}+2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-}$

$$
\mathrm{H}_{2} \mathrm{SO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}(\mathrm{~g})
$$

به أين ترتيب؛ معاللهُ يونى واكنش كامل به قراز زير است: $2 \mathrm{Na}^{+}+\mathrm{SO}_{3}^{2-}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \longrightarrow$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-}
$$

معادلهٌ بونى خالص براي واكثنى جَنين است:

$$
\mathrm{SO}_{3}^{2-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}(\mathrm{~g})
$$

تمونهاى از واكثش يكـكربنات با اسيد بهصورت زير است:
$2 \mathrm{~K}^{+}+\mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \longrightarrow$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{~K}^{+}+2 \mathrm{NO}_{3}^{-}
$$

معادله يونى خالص برايى اين واكنش به قرال زير است:

$$
\mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})
$$

 $\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \longrightarrow$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

معادلة يونى خالصى برای واكنش يك نمك آهونيوم و يكـ باز قوى به قرار زير است:

$$
\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}
$$

 صادق است (بتش

 هيلدرورن - ا مىيانشد.

 .

> r-1r
> علد اككسايش P در P
\downarrow
جبع جيرى اعداد أكسايش شولكول بايال صفر شود. بنابراين، $r(H$ H H 负

 خواميم داشت:
$\psi(1+)+x+\psi(\psi-)=0$
$x=0+$

مثال
عدد اكسايش Cr در بر ن دیكرومات،
 بار يون، يعنى - r شود، عده اكسايش 0 برابر با - Y (قاعده و) است:
$r\left(C_{r}\right.$)

$$
\begin{aligned}
r x+y(r-) & =r- \\
r x & =1 r+ \\
x & =9+
\end{aligned}
$$

 SO تركيب - r| است.

F-1r F عدد اكسايش Cl در كلنسيم يركلرات،

 - 1 - أست.
 الكترونهاي هر بيوند به اتم الكترونگاتيو بهدست آورد. برايى مولكول

$\mathrm{H}: \ddot{\mathrm{C}} \mathrm{l}:$

 هيلروزذن، به علت التصصاص يانتّن تنها الكتوون آن به اتم كلر، برابر با با + 1 +

 اكـايشش هو دو اتم كلل در مولكوليل زير، صفر است

: $\ddot{C}|: \ddot{C l}|$

براساس اين ايدهها قو اعد زير را مى تو ان براى تعيين عدد اكسايش بيان كرد:

 اكسايش + 1 اكو عناصر گروه

فلوئوردار - الست. 9 ــعدد اكسـايش اكسيزن در اغلب تركيبهاى اكسيرْندارو، - باست. ولى تخند مورد استثنا ينيز وجرد دارد:

 ج ج - در -

 اكسا يش ــاها هش بهكار كرفت.

育

 با باكسيرن تركيب مىشـلند، وكاهش نيز بهصورت حلف اكسيرّن از يكى
 كُسترش يافت. اهروزه، اكسا يش و كاهشُ بر مبناى تغيبر علد اككسا يشّ تعريف ميشرند.

$$
\underset{0}{\mathrm{~S}}+\underset{0}{\mathrm{O}_{2}} \longrightarrow \underset{4+2-}{\mathrm{S}_{2}}
$$

$$
\underset{4+2-}{\mathrm{SOO}_{2}}+\underset{1+2-}{\mathrm{H}_{2} \mathrm{O}} \longrightarrow \underset{1+4+2-}{\mathrm{H}_{2} \mathrm{SO}_{3}}
$$

 است.

 اكسيله مىشود عامل كاهش با كاهنده نام دارد. بنابرايزن

موازنهكردن معادلات واكنش هاى اكسايشى - كاغشیى كه مـعمولاً

$$
(Y+)+Y x+\Lambda(Y-)=0
$$

$\gamma x=1 F+$
$x=\vee+$
 با

است. به اين ترتيب!

$$
\begin{aligned}
& x+Y(r-)=1- \\
& x=\mathrm{Y}+
\end{aligned}
$$

 فيزيكى است؛ اعداد اكسايش الم صرفاً قراردادىانـ.

برخد از عناصر، كسترواى از اعداد اكسايش را در تركيبات خود نشان
 (HNO

 بالاترين بار مهكن حتي فرضى، برابر با شهماره گروه است است. Y Y ـ

 در Na

 دارد (مثالُّ فلوثور و و اكسيزِن) .

روش يون -الكترون

 می

 جزُ تُى كه كمبود 0 دارد اضضافن كنيلا

 جزنُى كه كمبود O مارد اضافه كنيا
 جزنى كه كمبود H دارد اضافه كنيلد و يكـ OH هقابل قرار دهيهد.

 هع

 برابر شو 2.

- 8

$$
\begin{aligned}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} & \longrightarrow 2 \mathrm{Cr}^{3+} \\
2 \mathrm{Cl}^{-} & \longrightarrow \mathrm{Cl}_{2}
\end{aligned}
$$

 در سمـت راستت معادله جزنُى اول بل به هفت اتم O نياز داريم؛ درنتيجه

 صروت موازنهشده استا.

$$
14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}
$$

"

1. Redox reactions

 استفاده خوراهد شـر.

روش يون = الكترون برای موازنه واكنش ها ها كاكس

$$
\underset{0}{2 \mathrm{Na}}+\underset{0}{\mathrm{Cl}_{2}} \rightarrow \underset{1+}{2 \mathrm{Na}^{+}}+\underset{1-}{2 \mathrm{Cl}^{-}}
$$

 دست دادن الكتر ون نوعى اكسا يشن است، و گرفتن الكترون تيبز گونهانى از
 نيمواك:ش هاه هستند، تقسيم كرد:

$$
\begin{aligned}
& \text { 낸: } 2 \mathrm{Na} \longrightarrow 2 \mathrm{Na}^{+}+2 e^{-} \\
& \text {كاهـ }: 2 e^{-}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl}^{-}
\end{aligned}
$$

الكترونهانى

 شيوب، مثالى مى آلوـيم:
 زير است،

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{Cl}_{2}
$$

در اين معادلةٌ هوازنهنشُله

 هعادله تعيين میشود: 1 مركزى

 را با جالبى نكردمايم:

$$
24 \mathrm{H}^{+}+18 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{As}_{4} \mathrm{O}_{6}+8 \mathrm{MnO}_{4}^{-} \longrightarrow
$$

$$
20 \mathrm{H}_{3} \mathrm{AsO}_{4}+8 \mathrm{Mn}^{2+}
$$

 انجام میئتود:

$$
\mathrm{MnO}_{4}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{MnO}_{2}+\mathrm{N}_{2}
$$

$$
\begin{gathered}
\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{2} \\
\mathrm{~N}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{~N}_{2}
\end{gathered}
$$

, OH^{-}

 دارد اضافه ميشودو و يكا يون مـي

$$
\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

 حهار اتم هيلدورئن، اضافه ميكتيم:

$$
4 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{OH}^{-}
$$

با حـذ HYO Y |ز دو طرف معادلd جزئى داريم:

$$
2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}
$$

 به سمتى كي كمبود H دارد و يكى

$$
4 \mathrm{OH}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

 مى توان از لحاظ الكتونونى مرازنه كرد:

$$
\begin{aligned}
6 e^{-}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} & \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{Cl}^{-} & \longrightarrow \mathrm{Cl}_{2}+2 e^{-}
\end{aligned}
$$

$$
6 e^{-}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

$$
6 \mathrm{Cl}^{-} \longrightarrow 3 \mathrm{Cl}_{2}+6 e^{-}
$$

مى آوربم. ضمنن اين افزايشَ الكترونها حذف ميشوند:
$14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Cl}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Cl}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
دومين مثال ما واكنش زير است كه در مسلول اسيلى انجام مىشُود.
$\mathrm{MnO}_{4}^{-}+\mathrm{As}_{4} \mathrm{O}_{6} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{H}_{3} \mathrm{AsO}_{4}$
همان مراحل قبلى ر ا براى اين واكنث نيز انجام ميدهيم:

$$
\begin{aligned}
& \mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+} \\
& \mathrm{As}_{4} \mathrm{O}_{6} \longrightarrow 4 \mathrm{H}_{3} \mathrm{AsO}_{4}
\end{aligned}
$$

 ب H 1 Y 1 H

$$
\begin{gathered}
8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
10 \mathrm{H}_{2} \mathrm{O}+\mathrm{As}_{4} \mathrm{O}_{6} \longrightarrow 4 \mathrm{H}_{3} \mathrm{AsO}_{4}+8 \mathrm{H}^{+}
\end{gathered}
$$

「

$$
\begin{aligned}
& 5 e^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
& \quad 10 \mathrm{H}_{2} \mathrm{O}+\mathrm{As}_{4} \mathrm{O}_{6} \longrightarrow 4 \mathrm{H}_{3} \mathrm{AsO}_{4}+8 \mathrm{H}^{+}+8 e^{-}
\end{aligned}
$$

$40 e^{-}+64 \mathrm{H}^{+}+8 \mathrm{MnO}_{4}^{-} \longrightarrow 8 \mathrm{Mn}^{2+}+32 \mathrm{H}_{2} \mathrm{O}$

$$
50 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{As}_{4} \mathrm{O}_{6} \longrightarrow 20 \mathrm{H}_{3} \mathrm{AsO}_{4}+40 \mathrm{H}^{+}+40 e^{-}
$$

نه، دشو ار است. واكنشى زير را دربظر بغيريد:

$$
\underset{4+}{\mathrm{SO}_{3}^{2-}}+\underset{5+}{\mathrm{ClO}_{3}^{-}} \longrightarrow \underset{6+}{\mathrm{SO}_{4}^{2-}}+\mathrm{ClO}_{2+}^{-}
$$

اكسيون((از

 قرار زير است.

$$
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\underset{5+}{\mathrm{HNO}_{3}}+\underset{2-}{\mathrm{H}_{2} \mathrm{~S}} \longrightarrow \underset{2+}{\mathrm{NO}}+\underset{0}{\mathrm{~S}}+\mathrm{H}_{2} \mathrm{O}
$$

اكيسيدشـده (از - r بي صفر، افزإشي برابر با ب).

$$
2 \mathrm{HNO}_{3}+3 \mathrm{H}_{2} \mathrm{~S} \longrightarrow 2 \mathrm{NO}+3 \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{HNO}_{3}+3 \mathrm{H}_{2} \mathrm{~S} \longrightarrow 2 \mathrm{NO}+3 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}
$$

[^20]r - بـراى مو ازنهُ بار الكتريكى الكتتورن اضافهس میكتيم:
\[

$$
\begin{aligned}
3 e^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-} & \longrightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-} \\
4 \mathrm{OH}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} & \longrightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+4 e^{-}
\end{aligned}
$$
\]

F

$12 e^{-}+8 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{MnO}_{4}^{-} \longrightarrow 4 \mathrm{MnO}_{2}+16 \mathrm{OH}^{-}$

$$
12 \mathrm{OH}^{-}+3 \mathrm{~N}_{2} \mathrm{H}_{4} \longrightarrow 3 \mathrm{~N}_{2}+12 \mathrm{H}_{2} \mathrm{O}+12 e^{-}
$$

OH^{-}- ه ا , بهدست میآوربم:
$4 \mathrm{MnO}_{4}^{-}+3 \mathrm{~N}_{2} \mathrm{H}_{4} \longrightarrow 4 \mathrm{MnO}_{2}+3 \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{OH}^{-}$
 اتجام مىشود:

$$
\mathrm{Br}_{2} \longrightarrow \mathrm{BrO}_{3}^{-}+\mathrm{Br}^{-}
$$

1) $\begin{aligned} \mathrm{Br}_{2} & \longrightarrow 2 \mathrm{BrO}_{3}^{-} \\ \mathrm{Br}_{2} & \longrightarrow 2 \mathrm{Br}^{-}\end{aligned}$
r) $\begin{aligned} 12 \mathrm{OH}^{-}+\mathrm{Br}_{2} & \longrightarrow 2 \mathrm{BrO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{Br}_{2} & \longrightarrow 2 \mathrm{Br}^{-}\end{aligned}$
r) $\begin{aligned} & 12 \mathrm{OH}^{-}+\mathrm{Br}_{2} \\ & 2 e^{-} \longrightarrow 2 \mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br}_{3}^{-}+6 \mathrm{Br}_{2} \mathrm{O}+10 e^{-} \\ &\end{aligned}$
2) $12 \mathrm{OH}^{-}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{BrO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O}+10 e^{-}$
$10 e^{-}+5 \mathrm{Br}_{2} \longrightarrow 10 \mathrm{Br}^{-}$
Q) $12 \mathrm{OH}^{-}+6 \mathrm{Br}_{2} \longrightarrow 2 \mathrm{BrO}_{3}^{-}+10 \mathrm{Br}^{-}+6 \mathrm{H}_{2} \mathrm{O}$

$6 \mathrm{OH}^{-}+3 \mathrm{Br}_{2} \longrightarrow \mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
اغلب معادلهـهاى اكسايش -كاهش را بايد با با روش بون ـ ـ الكترون

 در حالىك، معادلات جزئى احتمالاً نمايشگر يكى ديدگاه كلى، و نه

 مرلكرل H شو اهل تجربى نشان

 HCl

$$
\mathrm{HCl}(\mathrm{~g}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

 : توليدكندن OH^{-1} (aq)

$$
\begin{gathered}
\mathrm{NaOH}(\mathrm{~s}) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
\end{gathered}
$$

 .

مربرط بم دو واكنشُ خنثـشدن بهقراز زير استت:

$$
\mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow
$$

$$
\mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \longrightarrow$

$$
\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{NO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}
$$

بريليم كلريد (
 آَنير نشان از اسيد كُرفته شده انست: معادله يرنى خالص براي هر دو واكنش ختثششدن به قرازذيراست:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
& \text { كـ ممكن است به صررت زير نوشته شود: } \\
& \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

 درنظر بغيريد:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}+\mathrm{ClO}_{3}^{-} \longrightarrow \mathrm{IO}_{3}^{-}+\mathrm{Cl}^{-}+\mathrm{H}^{+}
$$

$$
\mathrm{H}_{2} \mathrm{O}+\underset{0^{2}}{\mathrm{I}_{2}}+\underset{5+}{\mathrm{ClO}_{3}^{-}} \longrightarrow \underset{5+}{\mathrm{IO}_{3}^{-}}+\underset{1-}{\mathrm{Cl}^{-}}+\mathrm{H}^{+}-1
$$

$$
\mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}+5 \mathrm{ClO}_{3}^{-} \longrightarrow 6 \mathrm{IO}_{3}^{-}+5 \mathrm{Cl}^{-}+\mathrm{H}^{+}
$$

 موازنه شوند:
$3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}+5 \mathrm{ClO}_{3}^{-} \longrightarrow 6 \mathrm{IO}_{3}^{-}+5 \mathrm{Cl}^{-}+6 \mathrm{H}^{+}$ بك معادله يونى، علاوه بر موازنه جرم، بايل مو ازنه بار بار را نيز نشان دن دهد. جون جمع جبرى بار در سمت جیث (- ه) برابر بار در سـمت راست

 $\underset{\substack{\mathrm{H} \\ \mathrm{H}}}{\ddot{\mathrm{O}}:+\mathrm{H}-\ddot{\mathrm{C}} \mathrm{l}:(\mathrm{g})} \longrightarrow\left[\begin{array}{c}\mathrm{H}-\ddot{\mathrm{O}}-\mathrm{H} \\ \mathrm{O} \\ \mathrm{H}\end{array}\right]^{+}(\mathrm{aq})+: \ddot{\mathrm{C}}:^{-}(\mathrm{aq})$

 سولفوريكاسياد مىتواند دو يروتون از دست بلهـد:

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O} & \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \\
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
\end{aligned}
$$

طى واكنش يك مول ختثى میشود:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{NaHSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$

 نمك اسيلـى نامند. اكر يكى مول
 واكنش نهك نرمال يعني

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
$$

نمكـ اسيدى مى تواند با NaOH واكشش داده و نمكَ نرمال بمدست دهـ:

$$
\mathrm{NaHSO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$

"ى تواند سه نمك (دو نمكا اسيلدى و يك نمكا نرمالل) توليد كند: $\mathrm{NaH}_{2} \mathrm{PO}_{4} \quad \mathrm{Na}_{2} \mathrm{HPO}_{4} \quad \mathrm{Na}_{3} \mathrm{PO}_{4}$

|

 میشود، يون اكسيد با بآب واكنث مىدهدل:

$$
\mathrm{O}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{OH}^{-}(\mathrm{aq})
$$

اكسيدها و هيدروكسيدهاى سائير فلزات در آب انحالالناباذي يرند.

 اثر كرما به اكسيد تبديل مىشوند:

$$
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \mathrm{MgO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

 خشثى كرد:

$$
\begin{gathered}
\mathrm{MgO}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

|
تركيبات دوتايى

تركيبات دوتايى	
اسيدهاى هجا	اسيلههاى يكهيروتونى
	(HCI
	\% ها
تركيبات ساتى	
	اسيلمالى يك يكروتونى
	-
كر $\mathrm{H}_{+} \mathrm{CO}_{+}{ }^{\text {\# }}$	
	ميبوكلرواسيد ${ }^{\text {HoCi* }}$
	"ا

 0مبولى عبارتند از

 كمتر ز

ضعين است:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})
$$

 از أنهاست:

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

 حدود يونش استبكا اسبيد برگشت يذ ير است.

 طو لانى، ملاط با با جذب (g) سخت میشود:

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}
$$

 بين نلزات و نافلزاتص، بهوجر د مي آينتن:

$$
\begin{aligned}
& \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O} \\
& \left.\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{AllOH}\right)_{4}^{-}(\mathrm{aq}) \\
& \text { برن آلوبينات } \\
& \mathrm{ZnO}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{ZnO}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{4}^{2-}(\mathrm{aq}) \\
& \text { بيرن زنكات }
\end{aligned}
$$

 فرإيند، ${ }^{\text {فـ }}$

 جذا ميكند:

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{SiO}_{2}(\mathrm{~s}) \longrightarrow \mathrm{CaSiO}_{3}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

 MgO (اك اكسيلهاى MaO

 (SiO_{μ})
 اكـيـيداسيدى نيز سديم و كلسيم مى باشد. در مواردي اين اكسيدها را با با اكسيدهاي ديخرى جاي جايگزين مي كتنـد.

تيره)، و COO (آبى).

الــالاكتـت ما (از بالا)
 ، $\mathrm{Ca}\left(\mathrm{HCO}_{\mathrm{Y}}\right.$)

توليد بُدهدأندا

$$
\mathrm{Ca}^{\gamma+}(\mathrm{aq})+\mathrm{YHCO}_{\mathrm{r}}^{-(\mathrm{aq})} \longrightarrow \mathrm{CaCO}_{\Gamma}(\mathrm{s})+\mathrm{H}_{T} \mathrm{O}+\mathrm{CO}_{\gamma}(\mathrm{g})
$$

 توليد نهى كند:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{r}
\mathrm{Cl}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HOCl} \\
\mathrm{Cl}_{2} \mathrm{O},+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HClO}_{4} \\
\mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HNO}_{3} \\
\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4} \\
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \\
\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{3} \\
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}
\end{array}
$$

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{SO}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})
\end{gathered} \mathrm{SO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
& \text { so } \\
& \text { (از مهيوكلرواسيد) يوذ هيبوكلربت ، OC1- }
\end{aligned}
$$

نام نمك را با افزودن نام كاتيون به نام آنيون بهدست مى آورند:

$$
\begin{aligned}
& \text { NaNO }{ }_{\gamma} \\
& \text { (III) (III) }
\end{aligned}
$$

 حذن میكنّن.
$\mathrm{HPO}_{\mathrm{F}}^{-}$
HPOT-

2ر بیى سيستم نامگذا
 به كار میبردند.

HCOF HSO ${ }_{\mu}^{-}$

Y - 11 سنجش حجمىى بر اندازد كيرى دقبت حجم يحى محلون استوا إر است. در

نامگذارى اين تركيبات و نمكاهاى حاصل از آنها بَهقرار زير است:

HCl H
 نامخذل ارى ميكنيم:

$$
\text { Hr } \mathrm{H}_{r} \mathrm{BO}_{r}
$$

$$
\begin{aligned}
& \text {. } \mathrm{HNO}_{r} \\
& \text {. } \mathrm{HNO}_{\mu}
\end{aligned}
$$

 مركزى را نمايشى دهد:
 HOCl
 اكسايش بالاتر اتم مركزى را نسبت به اسيد ـ يكى نشـان دهد:

$$
\begin{aligned}
& \text {. } \mathrm{HClO}{ }_{r}
\end{aligned}
$$

 مىشـود. يبشُوندها، در صورت وجود، حنظ مى شوند:

جون وزن اتمى ${ }^{\text {تم }}$ نـونه رأ به طريت زير به دست آوردد:

$$
\left.\begin{array}{rl}
\therefore 0.1 & =3.171 \times 10^{-3} \mathrm{~mol}^{\mathrm{AgNO}_{3}}\left(\frac{1 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{AgNO}}\right)\left(\frac{5.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{CT}}\right.
\end{array}\right)
$$

جرم ${ }^{\text {Cl }}$ موجود در نمونه، برابر است با:

$$
\left(\frac{0.1124 \mathrm{~g} \mathrm{Cl}^{-}}{10.00 \mathrm{~g} \mathrm{\& نom}}\right) 100 \%=1.124 \% \mathrm{Cl}^{-}
$$

- 9 - مثال

نمونهاي از سركه به ورز

صورت مییيرد:
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ يس از افزايش
 استيكاسيل مو:جود در نمونئ سركه را بيدا كينيد.

ح
تعداد مولهاى NaOH مصرفششده را بـه مـريت زيـر مــوتوان محاسبـب كرد:

$$
1 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \approx 1 \mathrm{~mol} \mathrm{NaOH}
$$

? $\mathrm{g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1.725 \times 10^{-2} \mathrm{~mol} \mathrm{NaOH}\left(\frac{1 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{NaOH}}\right)$

$$
\left(\frac{1.036 \mathrm{~g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{25.00 \mathrm{~g} \mathrm{~S}_{\mathrm{J}}}, 100 \%=4.144 . \% \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~S}_{5}-\right.
$$

$$
\begin{aligned}
& \left(\frac{60.05 \mathrm{~g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{O}}\right)=1.036 \mathrm{~g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& \text { رصد جبرى }
\end{aligned}
$$

$$
\begin{aligned}
& =1.725 \times 10^{-2} \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

بورت قرار میدهند. درقسمت پايين بورت شيرى قرار دارد تا به كمكى

 روشهاى تيتركردن حجم معينى إذ محلول استاندارد يا جرم مر معينى از

 نتطهُ هم راز بهدست آيد.

 استوارنل. در مثالهاى زير، با الين سه روش آشنا میشويم.

مثال

 AgNO

$$
\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

جّس از آنكه بخش قابل توجهي از
سفيد) درآمل، در اثو افزايش مقدار كمى Ag تشكيل خراهد شد:

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CrO}_{4}^{2-} \longrightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})
$$

 موجود در يساب جقفدر است؟

$$
\begin{aligned}
& \text { ح } \\
& \text { أبتدا تعداد مول AgNO } \\
& ? \mathrm{~mol} \mathrm{AgNO}_{3}=30.20 \mathrm{~mL} \int \operatorname{lan}\left(\frac{0.1050 \mathrm{~mol} \mathrm{AgNO}}{3}\right) \\
& =3.171 \times 10^{-3} \mathrm{~mol} \mathrm{AgNO}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \mathrm{~mol} \mathrm{Cl}^{-} \approx 1 \mathrm{~mol} \mathrm{AgNO}_{3}
\end{aligned}
$$

 از يك تركيب را وزن همارز نامنلد. بسطور كلى:
g وزن فرمر

انكتش مسدهـد:

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}
$$

 a باز است كه يك مول يون در در H
 مورد نظر است. ال r

 نيمواكثش زيو:

$$
5 e^{-}+8 \mathrm{H}^{+}+\underset{7+}{\mathrm{MnO}_{4}^{-}} \longrightarrow \underset{2+}{\mathrm{Mn}^{2+}}+4 \mathrm{H}_{2} \mathrm{O}
$$

$$
6 e^{-}+14 \mathrm{H}^{+}+\underset{6+}{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \underset{3+}{2 \mathrm{Cr}^{3+}}+7 \mathrm{H}_{2} \mathrm{O}}
$$

a برابر 9 است a وزن همراز

 جزئى الهت).

 (M) آن رابطة زير برقَرار است:

$$
N=a M
$$

V

$8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

 اضافی از از بحلول
设 شو جود در كانها را بهدست آوريد.

ابتدا تعداد مر لنهاى

$$
=6.827 \times 10^{-4} \mathrm{~mol} \mathrm{KMnO}_{4}
$$

جا
$5 \mathrm{~mol} \mathrm{Fe}^{2+} \approx 1 \mathrm{~mol} \mathrm{KMnO}_{4}$
و وز اتمدي Fe نيز
$\because \mathrm{g} \mathrm{Fe}=6.827 \times 10^{-+} \mathrm{mol} \mathrm{KMnO}_{4}\left(\frac{5 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{KMnO}_{4}}\right)$ $\left(\frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{molFe}}\right)$

$$
\begin{equation*}
=0.1906 \mathrm{~g} \mathrm{Fe} \tag{1molFe}
\end{equation*}
$$

 $\left(\frac{0.1906 \mathrm{~g} \mathrm{Fe}}{0.4308 \mathrm{~g} \mathrm{a} 5}\right) 100 \%=44.24$.

4

 واكت

 تمونهاى از سنگگ آثهن به وزن

 آهن موجود در اين كانه جانلر است
\downarrow
ايت مسنُله با مثال

$$
\begin{aligned}
e_{\mathrm{A}} & =V_{\mathrm{A}} N_{\mathrm{A}} \\
& =(0.02735 \mathrm{~L})(0.1248 \text { equiv } / \mathrm{L}) \\
& =3.413 \times 10^{-3} \text { equiv }
\end{aligned}
$$

تعلاد هم الرزهاى ${ }^{\text {تا }}$ نمونئ كاته استا
 (أز + يعنى
$? \mathrm{~g} \mathrm{Fe}=3.413 \times 10^{-3}$ equiv $\mathrm{Fe}\left(\frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \text { equiv } \mathrm{Fe}}\right)=0.1906 \mathrm{~g} \mathrm{Fe}$
درصد جرمى Fe در نمونه، بوابي است با:

$$
\left(\frac{0.1906 \mathrm{~g} \mathrm{Fe}}{0.4308 \mathrm{~g} \mathrm{~s} .5 \mathrm{~s}}\right) 100 \%=44.24 \% \mathrm{Fe} \text { در كانه }
$$

محاسبه مىشبد:

$$
\begin{equation*}
V_{\mathrm{A}} N_{\mathrm{A}}=V_{\mathrm{B}} N_{\mathrm{B}} \tag{f-1H}
\end{equation*}
$$

خرن در دو طرف
 بـ كاررفته برایى هر دو يكسان باشد.

A - IF مثال
(الف)符

$$
\begin{align*}
V_{\mathrm{A}} N_{\mathrm{A}} & =V_{\mathrm{B}} N_{\mathrm{B}} \tag{الa}\\
(50.00 \mathrm{~mL}) N_{\mathrm{A}} & =(37.52 \mathrm{~mL})(0.1492 \mathrm{~N}) \\
N_{\mathrm{A}} & =0.1120 \mathrm{~N}
\end{align*}
$$

(ب)

$$
\begin{aligned}
N & =a M \\
0.1120 \text { equiv } / \mathrm{L} & =(2 \text { equiv } / \mathrm{mol}) M \\
M & =0.05600 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

(ب)

$$
\mathrm{AB}+\mathrm{CD} \longrightarrow \mathrm{AD}+\mathrm{CB}
$$

الكتروليتهاي قوى و ضفميف هى توان بـئنيبني كرد.

 موازنه كرد.

$$
\begin{aligned}
& \text { كامل ختشى میشود. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { طبق تعريف، ، }
\end{aligned}
$$

Normality
 نهكى ثرمال (بخشى Normall salt
 Oxidation
 Oxidation number

 Oxidizing agent
 Soxyacid بكى ازا كان ســ الست.

 Precipitation
 عامل كاهث (بخش Reducing agent
 Reduction

 Spectator ion
 Standard solution نـامل غلظت معينى از مادهٌ حل شـرنده الست.

 تيتر كردن (بـخشّ Titration
 مجهرل تعيين شـود. Volumetric analysis
 Weak acids and bases

Acid امسيد (بنخ

Acidic oxide آب واكثّن داده و اسيد توليد كثنل. Acid salt

 نـكـا توليد كند. Base تفكيك شود و يونهاي (aq) Disproportionation

 وزن همرارز (بختّ Equivalent weight

 - نيمو Half reaction كاهش؛ بكا فرايند اكسايش با كامش. Hydronium ion بكا يروتون و يك مولكول آب؛
 به وسبلة تغيير رنگ است. Metathesis reaction
 Monoprotic acid
 مسادلة Net ionic equation
 واكتش الست. Neutralization يك باز يا بين اكسيلدهاى آنها رن دهد.

*

$. \mathrm{CdI}_{\gamma}, \mathrm{AgNO}_{\Gamma}(\uparrow): \mathrm{HCl}, \mathrm{ZnSO}_{\Gamma}(\rho)!\mathrm{AlCl}_{\Gamma}, \mathrm{LiClO}_{r}(\tau)!\mathrm{NiSO}_{\Gamma}$,
 $\left.{ }_{9} \mathrm{Mg}\left(\mathrm{NO}_{\mu}\right)_{\gamma}\right) ؛ \mathrm{HBr}$, $\mathrm{Na}_{\gamma} \mathrm{PO}_{\varphi}$ (الكنش بين ترك $!\operatorname{Sr}\left(\mathrm{C}_{Y} H_{\gamma} \mathrm{O}_{Y}\right)_{Y}, \mathrm{Na}_{Y} \mathrm{CO}_{\gamma}(\Omega)!\left(\mathrm{NH}_{Y}\right)_{Y} \mathrm{SO}_{\psi}, \mathrm{SnCl}_{\gamma}(\tau): \mathrm{Ba}(\mathrm{OH})_{Y}$. $\mathrm{HCl}_{,} \mathrm{ZnS}(\mathrm{A})$
 فرد در ريوست أخر كتاب آملمه استا

واكنش هاى تراساختى و ا - Ir $\left.!\mathrm{H}_{4} \mathrm{PO}_{4}, \mathrm{Fe}(\mathrm{OH})_{\Gamma}\right)$ (الف $)$ $!\mathrm{ZnSO}_{+}, \mathrm{BaS}(2)!\mathrm{BaCl}_{Y}, \mathrm{Na}_{\Gamma} \mathrm{PO}_{\%}()!\mathrm{HCl}, \mathrm{Hg}_{\gamma} \mathrm{CO}_{\mu}$ (ب)

$$
. \mathrm{H}_{Y} \mathrm{~S}, \mathrm{~Pb}\left(\mathrm{NO}_{r}\right)_{r}(A)
$$

(世

$$
\begin{align*}
& \text { (il) } \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-}+\mathrm{ClO}_{2}^{-} \xrightarrow[\mathrm{MnO}_{2}]{\longrightarrow}+\mathrm{ClO}_{4}^{-}+\mathrm{OH}^{-} \\
& \mathrm{H}^{+}+\mathrm{CrO}_{7}^{2-}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O} \\
& \text { (ب) } \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{P}_{4}+\mathrm{HOCl} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Cl}^{-}+\mathrm{H}^{+} \\
& \text {(} \tau \\
& \mathrm{Cu}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O} \tag{د}\\
& \mathrm{PbO}_{2}+\mathrm{HI} \longrightarrow \mathrm{PbI}_{2}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { " } \\
& \begin{array}{l}
\mathrm{Fe}^{2+}+\mathrm{H}^{+}+\mathrm{ClO}_{3}^{-} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \quad(ب) \\
\mathrm{Pt}+\mathrm{H}^{+}+\mathrm{NO}_{-}^{-}+\mathrm{Cl}^{-} \xrightarrow{(ب)}
\end{array} \tag{الف}\\
& \mathrm{Pt}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-}+\mathrm{Cl}^{-} \xrightarrow[\mathrm{PtCl}_{6}^{--}]{\longrightarrow}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Cu}+\mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~Pb}+\mathrm{PbO}_{2}+\mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \longrightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O} \tag{s}\\
& \mathrm{MnO}_{2}+\mathrm{HI} \longrightarrow \mathrm{MnI}_{2}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{align*}
$$

$$
\begin{align*}
& \text { بوازنه كيدن: } \\
& \mathrm{ClO}_{3}^{-}+\mathrm{I}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{I}_{2} \tag{الفـ}\\
& \mathrm{Zn}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{+} \tag{ب}\\
& \mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{Br} \tag{e}\\
& \mathrm{ReO}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{HReO}_{4}+\mathrm{Cl}^{-} \tag{s}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{Cr}^{3+} \tag{الف}\\
& \mathrm{HNO}_{2}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{NO}_{3}^{-}+\mathrm{Mn}^{2+} \\
& \mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{ClO}_{3}^{-} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{S}+\mathrm{Cl}^{-} \tag{๕}\\
& \mathrm{IO}_{3}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{I}^{-}+\mathrm{N}_{2} \\
& \mathrm{Cu}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{NO} \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { كنيل. تمام واكنشهما در محلون اسبدى صـورت مىيكّرند. } \\
& \mathrm{AsH}_{3}+\mathrm{Ag}^{+} \longrightarrow \mathrm{As}_{4} \mathrm{O}_{6}+\mathrm{Ag} \tag{الف}\\
& \mathrm{Mn}^{2+}+\mathrm{BiO}_{3}^{-} \longrightarrow \mathrm{MnO}_{4}+\mathrm{Bi}^{3+} \tag{ب}\\
& \mathrm{NO}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{4} \xrightarrow{\mathrm{Mn}^{2+}+\mathrm{ICN}} \tag{c}\\
& \mathrm{MnO}_{4}^{-}+\mathrm{HCN}+\mathrm{I}^{-} \xrightarrow[\mathrm{Zn}^{2}+]{\longrightarrow} \mathrm{Mn}^{2+}+\mathrm{M} 0^{3+} \\
& \text { (د) }
\end{align*}
$$

$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{IO}_{3}^{-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{ICl}_{2}^{-} \quad$ (الن)
$\mathrm{Se}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{SeO}_{3}+\mathrm{Br}^{-}$
$\mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{Mn}^{2+} \quad(\underset{ }{2})$
$\mathrm{H}_{5} \mathrm{IO}_{6}+\mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}$
$\mathrm{~Pb}_{3} \mathrm{O}_{4} \longrightarrow \mathrm{~Pb}^{2+}+\mathrm{PbO}_{2}$

$$
\begin{aligned}
& \mathrm{HClO}_{2} \longrightarrow \mathrm{ClO}_{2}+\mathrm{Cl}^{-}
\end{aligned}
$$

 را
 $: \mathrm{CoSO}_{\mu}, \mathrm{MnCl}_{\Gamma}(2)!\mathrm{K}_{\Gamma} \mathrm{S}, \mathrm{Cd}\left(\mathrm{ClO}_{\Gamma}\right)_{\Gamma}(\tau)!\mathrm{HNO}_{\Gamma}!\mathrm{Fe}_{\Gamma}\left(\mathrm{CO}_{\mu}\right)_{\Gamma}(ب)$ $. \mathrm{Ca}(\mathrm{OH})_{Y},\left(\mathrm{NH}_{Y}\right)_{Y} \mathrm{SO}_{\gamma}(\Delta)$ (4

اعداد اكـايش
V. $1 T$ ت تميين كنيب:
 $\mathrm{Mg}\left(\mathrm{BF}_{\mathrm{F}}\right)_{\mu}$
 W (ج)
 $\cdot \mathrm{Na}_{\mathrm{r}} \mathrm{TaF}_{\text {人 }} \mu \mathrm{Ta}(\mathrm{j}): \mathrm{K}_{\mathrm{r}} \mathrm{ZrO}_{0} \mu$

 $\mathrm{Ca}_{\mathbf{Y}} \mathrm{VO}_{4}$

CoxeF $. \mathrm{Bi}_{g} \mathrm{O}_{\xi}^{9+}, \mathrm{Bi}(g)!\mathrm{BrF}_{\xi}^{-} \mu \mathrm{Br}(\mathrm{A}): \mathrm{Li}_{\mathrm{T}} \mathrm{U}_{\mathrm{Y}} \mathrm{O}_{\mathrm{V}} \rho \mathrm{U}(\rho)$

 $. \mathrm{OPF}_{\mathrm{r}}, \leadsto \mathrm{P}(\rho): \mathrm{P}_{\mathrm{r}} \mathrm{O}_{\wedge} \mu \mathrm{P}(\Omega): \mathrm{H}_{\boldsymbol{\rho}} \mathrm{TeO}_{\boldsymbol{\gamma}} \rho \mathrm{Te}(\rho)$

$\mathrm{Zn}+\mathrm{Cl}_{2} \longrightarrow \mathrm{ZnCl}_{2}$	(الف)
$2 \mathrm{ReCl}_{5}+\mathrm{SbCl}_{3} \longrightarrow 2 \mathrm{ReCl}_{4}+\mathrm{SbCl}_{5}$	()
$\mathrm{Mg}+\mathrm{CuCl}_{2} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{Cu}$	(\%)
$2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$	(a)
$\mathrm{WO}_{3}+3 \mathrm{H}_{2} \longrightarrow \mathrm{~W}+3 \mathrm{H}_{2} \mathrm{O}$	(a)

 عامل اكسنـهم و عامل كاهنده را تعيين كنيد:

$2 \mathrm{NaBr} \longrightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$		(الف)
$\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$		(ب)
$\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$		(c)
$\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+2 \mathrm{HF}$		
$2 \mathrm{HgO} \longrightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$		

بنويسبـ: (الف) (
 بــنو يسبلد: (الف) (
 با توليا تـركيبات زيـر هـى . $\mathrm{K}_{4} \mathrm{PO}_{4}(\underset{ }{(})$
(NaOH با ها هر يك از تركيـات زير بتو بسبل: (الف) (ب)

SO

$\mathrm{Al}(\mathrm{OH})_{\mu}(\mathrm{a})!\mathrm{H}_{\gamma} \mathrm{BO}_{\mu}(a)!\mathrm{H}_{\gamma} \mathrm{SO}_{\mu}(\tau)!\mathrm{HNO}_{\gamma}(ب)$

$. \mathrm{H}_{Y} \mathrm{SeO}_{\sim}(\Delta): \mathrm{Fe}(\mathrm{OH})_{\mu}(2)!\mathrm{HIO}_{r}(\tau)!\mathrm{KOH}(ب)$
 $\mathrm{Cu}\left(\mathrm{ClO}_{\mu}\right)_{\mu}(\rho): \mathrm{K}_{\mu} \mathrm{SO}_{\mu}(\varsigma): \mathrm{KHSO}_{\mu}(\rho): \mathrm{H}_{\psi} \mathrm{SO}_{\mu}(\tau)$
 $\mathrm{H}_{\mathrm{T}} \mathrm{BO}_{\Gamma}(\mathrm{g})!\mathrm{NaHCO}_{r}(\mathrm{~m})!\mathrm{NaNO}_{Y}(\mathrm{~s})!\mathrm{HBr}(\mathrm{aq})(\mathrm{r})$ "

 نساتاء؛ (و) آهن (III) نيّنرات.

ج ج

 TQ, 0 . mL ($10, \mathrm{Y} Y \mathrm{YLL}$, $\mathrm{Ba}(\mathrm{OH})_{Y}$ محلول باز حقدر است؟ -Mg(OH) $)_{r}$. .

 در اين $\mathrm{KHC}_{\lambda} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{O}_{4}$ ها ها

$$
\begin{align*}
& \mathrm{MnO}_{4}^{-}+\mathrm{I}^{-} \longrightarrow \mathrm{MnO}_{4}^{2-}+\mathrm{IO}_{4}^{-} \\
& \mathrm{P}_{4} \longrightarrow \mathrm{HPO}_{3}^{2-}+\mathrm{PH}_{3} \\
& \mathrm{SbH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Sb}(\mathrm{OH})_{4}^{-}+\mathrm{H}_{2} \\
& \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+\mathrm{OBr}^{-} \longrightarrow \mathrm{CO}_{3}^{2-}+\mathrm{N}_{2}+\mathrm{Br}^{-}
\end{align*}
$$

K ـ IH

$$
\begin{align*}
& \mathrm{Mn}(\mathrm{OH})_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{Mn}(\mathrm{OH})_{3} \tag{الف}\\
& \mathrm{Cl}_{2} \longrightarrow \mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-} \tag{ب}\\
& \mathrm{HXeO}_{4}^{-} \longrightarrow \mathrm{XeO}_{6}^{4-}+\mathrm{Xe}+\mathrm{O}_{2} \tag{ج}\\
& \mathrm{As}+\mathrm{OH}^{-} \longrightarrow \mathrm{AsO}_{3}^{3-}+\mathrm{H}_{2} \tag{2}\\
& \mathrm{~S}_{2} \mathrm{O}_{4}^{2-}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{3}^{2-}+\mathrm{OH}^{-}
\end{align*}
$$

ش゙

$$
\begin{align*}
& \mathrm{S}^{2-}+\mathrm{I}_{2} \longrightarrow \mathrm{SO}_{4}^{2-}+1^{-} \\
& \mathrm{CN}^{-}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{CNO}^{-}+\mathrm{MnO}_{2} \tag{ب}\\
& \mathrm{Au}+\mathrm{CN}^{-}+\mathrm{O}_{2} \longrightarrow \mathrm{AulCN}_{2}+\mathrm{OH} \\
& \mathrm{Si}+\mathrm{OH}^{-} \longrightarrow \mathrm{SiO}_{3}^{2-}+\mathrm{H}_{2} \tag{a}\\
& \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{BrO}^{-} \longrightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{Br}^{-}
\end{align*}
$$

ك

$$
\begin{align*}
& \mathrm{Al}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}+\mathrm{H}_{2} \tag{الند}\\
& \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{OCl}^{-} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{Cl}^{-} \tag{ب}\\
& \mathrm{I}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{H}_{3} \mathrm{IO}_{6}^{2-}+\mathrm{Cl}^{-} \\
& \mathrm{Bi}(\mathrm{OH})_{3}+\mathrm{Sn}(\mathrm{OH})_{4}^{2-} \longrightarrow \mathrm{Bi}+\mathrm{Sn}(\mathrm{OH})_{6}^{2-} \\
& \mathrm{NiO}_{2}+\mathrm{Fe} \longrightarrow \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{Fe}(\mathrm{OH})_{3} \tag{د}
\end{align*}
$$

K كنبـ. تهام واكنشّ ها در محلول اسبدلى صورت میگيرند.

$$
\begin{align*}
& \mathrm{P}_{4}+\mathrm{HOCl} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Cl}^{-} \tag{الفـ}\\
& \mathrm{XeO}_{3}+\mathrm{I}^{-} \longrightarrow \mathrm{Xe}+\mathrm{I}_{3}^{-} \\
& \mathrm{UO}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{UO}_{2}^{2+}+\mathrm{Cr}^{3+} \\
& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{CO}_{2}+\mathrm{Br}^{-} \tag{s}\\
& \mathrm{Te}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{TeO}_{2}+\mathrm{NO} \tag{A}
\end{align*}
$$

范

$$
\begin{align*}
& \mathrm{Al}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}+\mathrm{NH}_{3} \tag{الف}\\
& \mathrm{Ni}^{2+}+\mathrm{Br}_{2} \longrightarrow \mathrm{NiO}(\mathrm{OH})+\mathrm{Br}^{-} \\
& \mathrm{S} \longrightarrow \mathrm{SO}_{3}^{2-}+\mathrm{S}^{2-} \\
& \mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{I}^{-} \\
& \mathrm{S}^{2-}+\mathrm{HO}_{2}^{-} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{OH}^{-} \tag{s}
\end{align*}
$$

 ا
 مسمولى و نحكا

 ر ，ااكتئ اخرير
 （ب）（ب）نرماليتئ سلولول
竍

مسابأل طبقهبندى نشـده

 © $\mathrm{Ge}_{\mathrm{T}} \mathrm{a}^{\%-}, \mathrm{Ge}(\mathrm{g}) ؛ \mathrm{XeOF}_{4}, 2 \mathrm{Xe}(\Omega)$ （H）اr
 $\mathrm{Al}_{\Gamma} \mathrm{O}_{\Gamma}: \mathrm{OH}^{-}(g): \mathrm{H}^{+}, \mathrm{FeO}(A): \mathrm{SO}_{\Gamma}, \mathrm{BaO}(\rho): \mathrm{H}^{+}, \mathrm{ZnO}\left(\underset{\sim}{(\tau)}: \mathrm{OH}^{-}\right.$ $\mathrm{OH}^{-}, \mathrm{SO}_{4}(\mathrm{j}): \mathrm{H}_{\mathrm{Y}} \mathrm{O}$ 子

$$
\begin{align*}
& \mathrm{Sb}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Sb}_{4} \mathrm{O}_{6}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O} \tag{الف}\\
& \mathrm{NaI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{IO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \longrightarrow \mathrm{I}_{2}+\mathrm{SO}_{4}^{2-}+\mathrm{H}^{+} \\
& \mathrm{NF}_{3}+\mathrm{AlCl}_{3} \longrightarrow \mathrm{~N}_{2}+\mathrm{Cl}_{2}+\mathrm{AlF}_{3} \tag{د}\\
& \mathrm{As}_{4} \mathrm{O}_{6}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{HCl} \tag{A}
\end{align*}
$$

 تمام واكتشما در محلول اسبثى صبرت ميكيرند：
$\mathrm{Hg}_{5}\left(\mathrm{IO}_{6}\right)_{2}+\mathrm{I}^{-} \longrightarrow \mathrm{HgI}_{4}^{2-}+\mathrm{I}_{2}$
$\mathrm{MnO}_{4}^{-}+\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{3}^{3-}$
$\mathrm{CS}\left(\mathrm{NH}_{2}\right)_{2}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+\mathrm{SO}_{4}^{2-}+\mathrm{Br}^{-}$
$\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}^{3-}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Co}^{2+}+\mathrm{NO}_{3}^{-}+\mathrm{Mn}^{2+}$
$\mathrm{CNS}^{-}+\mathrm{IO}_{3}^{-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{CN}^{-}+\mathrm{SO}_{4}^{2-}+\mathrm{ICI}_{2}^{-}$
$\mathrm{CrI}_{3}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{IO}_{3}+\mathrm{Cl}^{-}$

 اسيوي؛（ب）اكسايش

斯 O_{r}（aq）， $\mathrm{O}_{\gamma}(\mathrm{g})$（ $\mathrm{H}_{Y} \mathrm{O}_{Y}$ ． －KMnO

侵

 N_{r} g
 ，
廆
 ازاز اين دوش نيخر，كردن． تينر كرد 3 الين نمونه

وزنهاي همارز و محلولهایى نرمال

 توليد میشيود．

 HIO

 $\mathrm{H}_{r} \mathrm{PO}_{4}$ ، $9,00 \mathrm{NH}_{4} \mathrm{SO}_{4} / 9,00 \mathrm{~N}$ ، HCl N

病 N苃

> ؟

院

隹

 $\mathrm{Fe}^{\mathrm{r}+} \mathrm{Fe}^{\mathrm{Fe}} \mathrm{F}^{\text {Y }} \mathrm{C}$

$$
A_{2}=\frac{-\Delta\left[A_{2}\right]}{\Delta t}
$$

جون غلظّت

 |ساس غلظذ

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{AB}(\mathrm{~g})
$$

 ترتيب، سرعت افزايش غلظت AB برابر با AB (L.s.) با دو مقلار، يعنى سرعت نإيديد شدن

 اب ا - ال، غلظلت AB او ليه برحسب زمان با منحنى تشان داده شده بـه براى خراهد بود.

 مادهُ واكنشدهنـنـه يعنى

 سرعت در ابتداى واكتش را سرعت اوليه میى انـامنـد.
 منحنى [A.

 سينتيكى الست.

, ااكتث فرضى زير را در نظر بطيريد:

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{AB}(\mathrm{~g})
$$

 تغييرات است.

به اين ترتيب، نماد ديار
 يعنى افزايش غلظت AB در فاصله زمانى معين،

$$
A B \text { سرعت بيدائى }=\frac{\Delta[A B]}{\Delta t}
$$

أكر غلظت AB بر حسب mol/L و زمان بر حسب ثانيه بيان شو د، سرعت
واكنش داراري والحدهاى زير خو اهد برد،

$$
\frac{\mathrm{mol} / \mathrm{L}}{\mathrm{~s}}=\operatorname{mol} /(\mathrm{L} \cdot \mathrm{~s})
$$

سرعت واكنش رامى توان بر حسبب كاهش غلظت

به صورت زير خراهل بود:

شـك بر حسب زمان

براى هر واكنش شيميايم، معادلهالى رياضى بهي نام معادلهُ سرعت يا
 واكتشن هربوط مى سازد. برايى واكنش

$$
\begin{aligned}
& 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
& \text { معادلئٌ سرعت زير رُ میتوانْ نوشت: }
\end{aligned}
$$

اين معادله به ما مى مويلد كـ سرعت واكـنش بـا غـلظت مستقيم دارد. اكر غلظت دو برابر شودي، سرعت دو دو برابر مسى مددد. اگحر

 مبناى آنها بيان میشود بستگى دارد. سرعت واكنی

$$
\mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g}) \longrightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

با غلظت NO و ضرب در غلظّت HCl متناسب است:

$$
\text { k[} \mathrm{NO} \mathrm{O}_{2}[\mathrm{HCl}]
$$

 سرعت واكنش جهار برابر میشود.

 : Δt) (

$$
A_{2} 0 .
$$

$$
=\frac{-(-0.05 \mathrm{~mol} / \mathrm{L})}{10 \mathrm{~s}}=0.005 \mathrm{~mol} /(\mathrm{L} . \mathrm{s})
$$

 در
 كاهش يافته است:

$$
\mathrm{A}_{2} \text {. }
$$

بهدست آَرردن دادهمالى لازم برايى رسم منخنى غلظت، معمر لاً دشـوار

 قدرت اسِيدى، رسانابي، محهـ، كانروى مورد استفاده قرإر كرفته است.

居 سرعت واكنثى اكها معمرلاً، به غلظت مواد واكثشث دهنده بسـتگى دارد.

 تبديل آنها بي فراورده مىشود، نسـبتاًا بـالاست و در نـتيجه، واكـنـن سريع است.

A A A $\mathrm{A}_{2}+\mathrm{B}_{2} \longrightarrow 2 \mathrm{AB}$

5:51,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HBr}(\mathrm{g}) \quad \quad \quad . \quad=\frac{k\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}}{k^{\prime}+[\mathrm{HBr}] /\left[\mathrm{Br}_{2}\right]}$

 (يعنى HBr) است.

آملههامت:

سرعت اوليم	غأظت اوليه		آزهايث
NO mol)/(L.s)	$\begin{gathered} O_{\psi} \\ \text { mol } / 2 \end{gathered}$	$\begin{gathered} \mathrm{NO} \\ \mathrm{~mol} / 2 \end{gathered}$	
$\mathrm{V} \times 10^{-9}$	$1 \times 10^{-+}$	1×10^{-r}	A
19×10^{-9}	$r \times 10^{-r}$	1×10^{-r}	B
$\mathrm{Y} \times 10^{-9}$	$r \times 10^{-r}$	1×10^{-r}	c
AF $\times 10^{-8}$	$r \times 10^{-r}$	$r \times 10^{-r}$	D
$1 \wedge 9 \times 10^{-8}$	$\times \times 10^{-r}$	$r \times 10^{-r}$	E

> فرم معادلدٌ سرعت و مقدار ثابت سرعت، حنين است:

积

 غلظت NO در آزمايش Dه دو براير غـلظت NO در آزمـايش C C است است.

 معادله سرعت ظاهر شود زيرا

براي واكنش

$$
\text { k } k \text { = } \text { = } \mathrm{NO}^{2}\left[\mathrm{H}_{2}\right]
$$

$$
\text { (زيرا })
$$

 سرعت است. تجزيه معادلثّ سرعت 1 است:

$$
\text { تسرع }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
$$

, واكثش بين اولن و بـ طور كلّى، مرتبهُ دوم است:

$$
\text { k[NO2 }=\text { = سرعت }
$$

 اول، و به طور كلى، مرتبُ سرم است

$$
\text { = }=k\left[\mathrm{NO}^{2}{ }^{2}\left[\mathrm{H}_{2}\right]\right.
$$

 استالدهيد (CHO)

$$
\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

در

$$
=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}
$$

در نتيجه، مرتبئ واكنش برابر با باب اساست. تجزيهُ صفر است:

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \xrightarrow{\mathrm{Au}} 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \text {. }
$$

 معادله سرعت يكسان ندارند. دو واكنث زير را در نظر بغيريد:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{~g}) \quad \text { س }=k\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]
$$

$$
\begin{aligned}
& 2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \text { معادلد سرحت بـ صورت زير است: }
\end{aligned}
$$

$$
-\frac{\Delta[\mathrm{A}]}{t}=k[\mathrm{~A}]
$$

با تغيير آرايش هe

$$
-\frac{\Delta[\mathrm{A}]}{[\mathrm{A}]}=k \Delta t \quad(r-1 \psi)
$$

كه نرم ديفرأنسيلى آن، جنين إست:

$$
-\frac{d[\mathrm{~A}]}{[\mathrm{A}]}=k d t
$$

$$
\begin{equation*}
\log \left(\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}\right)=\frac{k t}{2.303} \tag{c}
\end{equation*}
$$

كه در آن، هـ زمان to

تحون:

$$
\log (a / b)=\log a-\log b
$$

$$
\log \left([\mathrm{A}]_{0} /[\mathrm{A}]\right)=\log [\mathrm{A}]_{0}-\log [\mathrm{A}]
$$

$$
\log [\mathrm{A}]=-\frac{k t}{2.303}+\log [\mathrm{A}]_{0} \quad(0-14)
$$

$$
y=m x+b
$$

Sl أر

 هن أ

 log [A]

$$
t ، \text { زمان }
$$

 رأبررسى كرد. غلنات NO سه برابر شدها است: $\frac{3 \times 10^{-3} \mathrm{~mol} / \mathrm{L}}{1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}}=3$

سرعت 9 برابر شده است:

$$
\frac{189 \times 10^{-6} \mathrm{~mol} /(\mathrm{L} . \mathrm{s})}{21 \times 10^{-6} \mathrm{~mol} /(\mathrm{L} . \mathrm{s})}=9
$$

「 ${ }^{\text {+ }}$

$$
\mathrm{NO}_{2} \text { = سرعت بيدايش }=k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.
$$

 محاسببه ميكنيم: بري

$$
\begin{aligned}
\left(7 \times 10^{-6} \mathrm{~mol} /(\mathrm{L} . \mathrm{s})\right. & =k\left(1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right)^{2}\left(1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right) \\
\left(7 \times 10^{-6} \mathrm{~mol} /(\mathrm{L} . \mathrm{s})\right. & =k\left(1 \times 10^{-9} \mathrm{~mol}^{3} / \mathrm{L}^{3}\right) \\
k & =\frac{7 \times 10^{-6}(\mathrm{~mol} / \mathrm{L} . \mathrm{s})}{1 \times 10^{-9} \mathrm{~mol}^{3} / \mathrm{L}^{3}} \\
k & =7 \times 10^{3} \mathrm{~L}^{2} /\left(\mathrm{mol}^{2} \cdot \mathrm{~s}\right)
\end{aligned}
$$

سرحت واكنش (يا قانون سرعت) يكى واكتش شيميايى عبارت است

$$
\begin{aligned}
& \text { واكنش هاى مرتبهُ اول } \\
& \text { : } \mathrm{N}_{Y} \mathrm{O}_{0} \\
& 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
\end{aligned}
$$

نمونهاى از يكى واكنش مرتبةً اول الست. معادلهُ سرعت برأى اين واكتش به صورت دير است:

$$
\text { mem } \left.=k \mathrm{~N}_{2} \mathrm{O}_{5}\right]
$$

رانوشت:

$$
\text { = }=k[\mathrm{~A}]
$$

J

 $k=\left(\frac{1.35 \times 10^{-4}}{1 \mathrm{~s}}\right)\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=8.10 \times 10^{-3} \mathrm{~min}$

$\log \left(\frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}\right)=\frac{k t}{2.303}$
$\log \left(\frac{0.0300 \mathrm{~mol} / \mathrm{L}}{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}\right)=\frac{\left(8.10 \times 10^{-3} / \mathrm{min}\right)(30.0 \mathrm{~min})}{2.303}$ $=0.1055$
$\frac{0.0300 \mathrm{~mol} / \mathrm{L}}{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}=\operatorname{antilog} 0.1055$
$=1.275$
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\frac{0.0300 \mathrm{~mol} / \mathrm{L}}{1.275}$
$=0.0235 \mathrm{~mol} / \mathrm{L}$

$$
\log \left(\frac{0.0300 \mathrm{~mol} / \mathrm{L}}{0.0200 \mathrm{~mol} / \mathrm{L}}\right)=\frac{\left(8.10 \times 10^{-3} / \mathrm{min}\right) t}{2.303}
$$

$2.303 \log 1.50=\left(8.10 \times 10^{-3} / \mathrm{min}\right) t$

$$
\begin{aligned}
t & =\frac{2.303 \log 1.50}{8.10 \times 10^{-3} / \mathrm{min}} \\
& =\frac{2.303(0.176)}{8.10 \times 10^{-3} / \mathrm{min}} \\
& =50.0 \mathrm{~min}
\end{aligned}
$$

 غلظّت اوليه، يعنى .

$$
\begin{aligned}
{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] } & =0.100\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0} \\
& =0.100(0.0300 \mathrm{~mol} / \mathrm{L}) \\
& =0.00300 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] } & =0.100\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0} \\
\frac{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]} & =\frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}{0.100\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0}} \\
& =10.0
\end{aligned}
$$

 .

واكنشد دهنده بر حسب زمان، يكى خطط راست به دست آيـــ، واكـنش هرتبٌ اول است. علاوه بر اين، مقدار ثابت سرعت، يعنى خطـ می توانٍ بـ دست أَورد. r-if res براي واكتش:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 برابر با ها ه/

براسّاس معادلةٌ 1 1 ـ هـ، شيب خط برابر است با:
= -k/2.303 = شيب

بنابراين،

$$
\begin{aligned}
-k / 2.303 & =-5.86 \times 10^{-5} / \mathrm{s} \\
k & =1.35 \times 10^{-4} / \mathrm{s}
\end{aligned}
$$

در مطالعئ تجزيهُ . سرعت به دست آّهاه در مثال هرم \%/90ر० م

O If If

 سرعت، k، اين واكتن را در دماي 90 90 به دست آوريد.

> از معطادJI

$$
\begin{aligned}
k & =\frac{0.693}{t_{1 / 2}} \\
& =\frac{0.693}{2.38 \mathrm{~min}} \\
& =0.291 / \mathrm{min}
\end{aligned}
$$

 شـهـ است.

 عمور يعنى
 واكنششهاءى مرتبهُ اول است.

 .

$$
\begin{align*}
\log \left(\frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}\right) & =\frac{k t}{2.303} \\
\log 10 & =\frac{\left(8.10 \times 10^{-3} / \mathrm{min}\right) t}{2.303} \\
t & =\frac{2.303(\log 10)}{8.10 \times 10^{-3} / \mathrm{min}} \\
& =284 \mathrm{~min}
\end{align*}
$$

 نابهديد شُود،

$$
[\mathrm{A}]=\frac{1}{2}[\mathrm{~A}]_{0}
$$

$$
\begin{align*}
\log \left(\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}\right) & =\frac{k t}{2.303} \\
\log \left(\frac{[\mathrm{~A}]_{0}}{\frac{1}{2}[\mathrm{~A}]_{0}}\right) & =\frac{k t_{1 / 2}}{2.303} \\
\log 2 & =\frac{k t_{1 / 2}}{2.303} \\
t_{1 / 2} & =\frac{2.303(\log 2)}{k} \\
t_{1 / 2} & =\frac{0.693}{k} \tag{V-1F}
\end{align*}
$$

توجه كنيد كن تيمه عمر هر واكنش مرتبئ |ول، ثابتى مستقل از غلظت مادة: واكنشدهنـده است.

بثال
نيمه عمر تجزيهُ (g) واكنث در اين دفا،

J

معادلٌ را با قرار دادن ارقام در معادله

$$
\begin{align*}
t_{1 / 2} & =\frac{0.693}{k} \\
& =\frac{0.693}{8.10 \times 10^{-3} / \mathrm{min}} \\
& =85.6 \mathrm{~min}
\end{align*}
$$

واكنـش ماى مرتبّه دوم
 سرعت نيزّ در كنار معادلات شيهياييى آمدها است.

1. $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad=k\left[\mathrm{NO}_{2}\right]^{2} \quad(\Lambda-1 \mathrm{~F})$
2. $\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad$ uner $=k[\mathrm{NO}]\left[\mathrm{O}_{3}\right] \quad$ (9 - | f$)$

به اين ترتبب، دو عبارت كلى برايى معادلةٌ سرعت واكتش هالى مرتبهُ دوم هـتوان نوشت:

$$
\begin{equation*}
\text { تسرع }=k[\mathrm{~A}]^{2} \tag{10-14}
\end{equation*}
$$

$$
\begin{equation*}
\text { تسرع }=k[\mathrm{~A}][\mathrm{B}] \tag{11.14}
\end{equation*}
$$

 رياضیى سادهتر الست، را بحت مىكتيم. ايـن مسعادله را بـرأى تـرصين

 وجرد دارده مي توان به كار برد. اين معادله را همحتنين براي موارديى كه
 وجود دارندا هي تو ان مورد استفاده قرار داد.

$$
-\frac{d[\mathrm{~A}]}{[\mathrm{A}]^{2}}=k d t
$$

اين معادله را با عمليات سـادء رياضم هىتواتن به صورن زير در آورد:

$$
\frac{1}{[\mathrm{~A}]}-\frac{1}{[\mathrm{~A}]_{0}}=k t
$$

 زمان = ميتوان درآورد:

$$
\begin{equation*}
\frac{1}{[\mathrm{~A}]}=k t+\frac{1}{[\mathrm{~A}]_{0}} \tag{1F-1F}
\end{equation*}
$$

$$
y=m x+b
$$

 با شـيب kو بوخوردكاه

$$
[\mathrm{A}]=\frac{[\mathrm{A}]_{0}}{2}
$$

در نتيجهd، از معادلة

$$
\frac{1}{[\mathrm{~A}]_{0} / 2}-\frac{1}{[A]_{0}}=k t_{1 / 2}
$$

 واكنش مرتبأ صـر كه برای آنا سرعت

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \xrightarrow{\mathrm{W}} \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

فرم ديفرانسيلي معادللٌ سرعت واكتش موتبه صفر به صورت زير است:

$$
\begin{equation*}
-\frac{d[\mathrm{~A}]}{d t}=k \tag{14-1f}
\end{equation*}
$$

كه قابل تبديل به معادله زير است:

$$
\begin{equation*}
[\mathrm{A}]_{0}-[\mathrm{A}]=k t \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
[\mathrm{A}]=-k t+[\mathrm{A}]_{0} \tag{4}
\end{equation*}
$$

$$
y=m x+b
$$

 .را V V IF

 به اين ترتيب:

$$
\begin{align*}
k t_{1 / 2} & =[\mathrm{A}]_{0}-\frac{1}{2}[\mathrm{~A}]_{0} \\
t_{1 / 2} & =\frac{[\mathrm{A}]_{0}}{2 k}
\end{align*}
$$

 مرتبنٌ دومرا نشان ميدهد.

$$
\begin{aligned}
& V=1 \% \text { م }
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{[\mathrm{HI}]} & =k t+\frac{1}{[\mathrm{HI}]_{0}} \\
\frac{1}{[\mathrm{HI}]} & =\left[3.06 \times 10^{-2} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~min})\right][12 \mathrm{~min}]+\frac{1}{0.36 \mathrm{~mol} / \mathrm{L}} \\
& =0.367 \mathrm{~L} / \mathrm{mol}+2.78 \mathrm{~L} / \mathrm{mol} \\
& =3.15 \mathrm{~L} / \mathrm{mol} \\
{[\mathrm{HI}] } & =0.32 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

$$
t_{1 / 2}=\frac{1}{k[\mathrm{HI}]_{0}}
$$

$$
=\frac{1}{\left[3.06 \times 10^{-2} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~min})\right][0.36 \mathrm{~mol} / \mathrm{L}]}
$$

$$
=91 \mathrm{~min}
$$

 $t_{1 / \mathrm{T}}^{\text {t }}$ / برابر با HII متناوت است.

واكنش هاىى مرتبه صنر
 بهـ طور كلى،

$2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow{\mathrm{Au}} 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$2 \mathrm{HI}(\mathrm{g}) \xrightarrow{\mathrm{Au}_{\longrightarrow}} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

$$
\begin{align*}
& =k[\mathrm{~A}]^{0} \\
& \text { ، }[A]^{\circ}=1 \text { if } \\
& \text { =k } \tag{|A-|F}
\end{align*}
$$

$$
\begin{aligned}
& k t=\frac{1}{[\mathrm{HI}]}-\frac{1}{[\mathrm{HI}]_{0}} \\
& {\left[3.06 \times 10^{-2} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~min})\right] t=\frac{1}{0.25 \mathrm{~mol} / \mathrm{L}}-\frac{1}{0.36 \mathrm{~mol} / \mathrm{L}}} \\
& =4.00 \mathrm{~L} / \mathrm{mol}-2.78 \mathrm{~L} / \mathrm{mol} \\
& =1.22 \mathrm{~L} / \mathrm{mol} \\
& t=40 \mathrm{~min}
\end{aligned}
$$

 نيتروزيل نلوئوريد (ONF) را در نظر بيخيريد:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{ONF}(\mathrm{g})$
اين واكنش مكانيسم دو مرحلهايى دارد:

1. $\mathrm{NO}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{ONF}(\mathrm{g})+\mathrm{F}(\mathrm{g})$
2. $\mathrm{NO}(\mathrm{g})+\mathrm{F}(\mathrm{g}) \longrightarrow \mathrm{ONF}(\mathrm{g})$

توجه كنيد كه معادلأ شيميايى واكنش كلى شامل هجمبوع مـعادلات

(s) ubj

(s) St;
(ب)

(c)

$$
2 \mathrm{NOCl}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

. 0 , $94 r / k \quad \log [\mathrm{~A}] \quad \log \left(\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}=\frac{k t}{r, Y \cdot Y} \quad\right.$ حسب

$$
2 \mathrm{NOCl}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

اطلاعات زير بهدست آمده است:

[NOCl (mol/L)	(s) 310 j
0 \% YO.	-
0, ¢Yot	ro.
- .19199	F\%.
-jolty	V . ${ }^{\text {e }}$
- jolto	9.0

مرتبةء اين واكنت نسبت به NOCl، حفر، الول، ، يا دوم است؟

$\begin{aligned} & \mathrm{Y} / \mathrm{NOCl}] \\ & (\mathrm{L} \mathrm{~mol}) \end{aligned}$	$\log [\mathrm{NOCl}]$	($\mathrm{NOCl} / \mathrm{L}$)	\bar{f}
F. ${ }^{\circ}$	$-1,90$	0,40	-
+9, 0	$-1,99$	aporer	ras.
09,	$-1, \mathrm{vV}$	$0 \cdot 0199$	\%..
$v r j o$	$-1, A V$	-jolts	Voo
Nr, r	- 1,9\%	-jolto	4.0

$$
\left.e_{\mathrm{c}}^{\mathrm{c}} \mathrm{~m} \mathrm{NOCl}\right]^{2}
$$

هيدروكسيد در اتيل الكل آبى بـ عنوانة حلال، ،

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{Br}+\mathrm{OH}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Br}^{-} \\
& \text {, واكتش زير كه در فاز گازى انجام میشود } \\
& \mathrm{CO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
\end{aligned}
$$

 افـزايش دهL از

 شُكل
 أَنتالْی،

شتختصات واكتن
 $\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons \mathrm{~A}_{2} \mathrm{~B}_{2} \rightleftharpoons 2 \mathrm{AB}$

 يعنى

 مساهت b b a م

نظُرينُ حالت گذار

 بين B

 فعالشـدة كو تاه عموى مانتد A ${ }^{\text {a }}$

$$
\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons\left[\begin{array}{r}
\mathrm{A}--\mathrm{A} \\
\mathrm{~B}--\mathrm{B}
\end{array}\right] \rightarrow 2 \mathrm{AB}
$$

 ض B-B , A-A A-B النرُّى جتاتنسيل نسبتاً بالاست.

واكتشدهنده است.

در N N N N $\mathrm{N}_{\mathrm{Y}} \mathrm{O}$

 زير است:

$$
\mathrm{O}=\mathrm{N}+\mathrm{Cl}-\mathrm{Cl}+\mathrm{N}=\mathrm{O}
$$

 فعالسـازیبراياينزواكنش

 باشنـن، ميتران يكى هولكولى، دو مولكولىى، يـا سـه مـولكولى

 مادق نيست.

$$
2 \mathrm{~A}+\mathrm{B} \longrightarrow \text { فرأر ردمها }=k[\mathrm{~A}]^{2}[\mathrm{~B}]
$$

(-)

$$
\Delta H=E_{a, f}-E_{a, r}
$$

, واكنشترمازازا امت.

 قرار زير است:

$$
\Delta H=E_{a, v}-E_{a, S}
$$

تغيير آنتاليى مثبت امت، زيرا

 , NO , NO $\mathrm{N}_{\gamma} \mathrm{O}$

نـوودار كمهلكس فعال شده نشان میدهد كه يبيرند N - O در هو لكول

((للف)

جون سرعت واك:ش با تعلاد كل برخوردهها در ثانيه متناسبب است،

$$
\text { ترع } \propto \frac{1}{2} n^{2}
$$

 غلظت A است؛ بنابناين ${ }^{\top}{ }^{\top}$ متناسب با در ثابت تناسب، يعنى k، منظر ركرد. در نتـيجه،

$$
\text { = }=k[A]^{2}
$$

مورلكولى وجود دارد:

 برخر رد كنتند، نادر است

 مكانيسم يكـ واكنش بيشنتهاد تشده است.
W. ${ }^{6}$

 مهادللٌ سرعت زير بواى تشكيل نـينروزيل نـلوئوريد بـه صـورت تجربى به دست آهده است:

$$
2 \mathrm{NO}+\mathrm{F}_{2} \longrightarrow 2 \mathrm{ONF} \quad \mathrm{v}^{2}=k[\mathrm{NO}]\left[\mathrm{F}_{2}\right]
$$

 عبارتند لز:

1. $\mathrm{NO}+\mathrm{F}_{2} \longrightarrow \mathrm{ONF}+\mathrm{F} \quad$ I \quad : $=k_{1}[\mathrm{NO}]\left[\mathrm{F}_{2}\right]$
2. $\mathrm{NO}+\mathrm{F} \longrightarrow \mathrm{ONF} \quad$ سرع $=k_{2}[\mathrm{NO}][\mathrm{F}]$

$$
A \longrightarrow \text { A } \longrightarrow \text { in } 0 \text { i }=k[A]
$$

 نوع اوله هـنين استا

$$
\mathrm{A}+\mathrm{B} \longrightarrow \text { نراورد. } ا \text { هـا }
$$

 غلظات A Aادو برابر كنيم، سرعت نيز دو برابر خو اهد شلد، زيـرا تـعلاد

 [A]

$$
2 A \longrightarrow \text { نراورددها } \quad \text { نسرعتا }=k[A]^{2}
$$

 ا 1 انـتظار داشت كـه مستتاسب بـا 1/ K n n (n - 1)

隹

1. $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \quad \mid=k_{1}\left[\mathrm{C}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]$
2. $\mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+} r$ U $=k_{2}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]$
3. $\mathrm{Br}^{-}+\mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{r} \mathrm{C}^{2}$, $=k_{3}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}[\mathrm{Br}]\right.$

 بستيا

$$
\therefore \varepsilon=r=0,=k_{3}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]\left[\mathrm{Br}^{-}\right]
$$

 ح \rightarrow واسط واك:

$$
\mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \text {= }=k_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]
$$

$$
\mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \mathrm{O}=k_{2}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]+k_{3}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right][\mathrm{Br}]
$$

 $k_{\Gamma}\left[\mathrm{CH}_{\Gamma} \mathrm{OH}_{\Gamma}^{+}\right]\left[\mathrm{Br}^{-}\right]$ال

$\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{Br} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Br}^{-} \mathrm{E}_{\mathrm{m}} \mathrm{m}=k\left[\mathrm{CH}_{3} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$

 اتم

واكثش بين ترشرى -بيوتيل برميلد،
 OH^{-}

1. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr} \longrightarrow\left(\mathrm{CH}_{3}\right) \mathrm{C}_{3}+\mathrm{Br}^{-} \quad \mid \underset{\sim}{\mathrm{E}}=k_{1}\left[\left(\mathrm{CH}_{3}\right) \mathrm{CBr}\right]$ 2. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{OH}^{-} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$

$$
\mathrm{Y} \underbrace{}_{\mu}=k_{2}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

 يعنى

 $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+}+\mathrm{Br}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}$
$\underbrace{}_{\varepsilon}, \sim=k\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right]$

1 ـ ـرحرحله آفاز زنجير. برخى از مولكولههاى تفكيك مى شرند:

$$
\mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br}
$$

$$
\mathrm{Br}+\mathrm{H}_{2} \longrightarrow \mathrm{HBr}+\mathrm{H}
$$

$$
\mathrm{H}+\mathrm{Br}_{2} \longrightarrow \mathrm{HBr}+\mathrm{Br}
$$

به اين ترتيب يك مولكول ديگُ HBr و مامل زنجير اوليه، يعنى يك

$$
\mathrm{H}+\mathrm{HBr} \longrightarrow \mathrm{H}_{2}+\mathrm{Br}
$$

هم، دو زنحير از ميان مكروند:

$$
\begin{aligned}
2 \mathrm{Br} & \longrightarrow \mathrm{Br}_{2} \\
2 \mathrm{H} & \longrightarrow \mathrm{H}_{2} \\
\mathrm{H}+\mathrm{Br} & \longrightarrow \mathrm{HBr}
\end{aligned}
$$

واكنش

$$
k=A e^{-E_{a} / R T}
$$

مرف فنظر كرده زنبرا بسياركو

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \text {سرعت نإبيل شـدن } \\
& k_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]=k_{2}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]
\end{aligned}
$$

بنابدراين،

$$
\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]=\frac{k_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{k_{2}}
$$

با ترارداددن اين مقلدار در معادلهٌ سرعت برإى مرحلهُ سوم، داريم:

$$
\begin{aligned}
& =k_{3}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}{ }^{+}\right]\left[\mathrm{Br}^{-}\right] \\
& \underbrace{*}=k_{3}\left(\frac{k_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{k_{2}}\right)\left[\mathrm{Br}^{-}\right] \\
& \text {me }=\frac{k_{1} k_{3}}{k_{2}}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right] \\
& \text {ثابت } \\
& -\infty=k\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right]
\end{aligned}
$$

$$
k=\frac{k_{1} k_{3}}{k_{2}}
$$

 را مي توان به صور بت شكـل

كنيد كاه مرحلةُ Y عكس مرحلةً الست.

$$
\mathrm{H}_{2}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{HBr}
$$

范

كه قابل تبديل به معادله زير است

$$
\begin{equation*}
2.303 \log k=2.303 \log A-\frac{E_{a}}{R T} \tag{YO-1F}
\end{equation*}
$$

$$
\begin{equation*}
\log k=\log A-\frac{E_{o}}{2.303 R T} \tag{Y9-14}
\end{equation*}
$$

 اكر معادله را به صروت زير در آوريم:

$$
\begin{equation*}
\log k=-\frac{E_{a}}{2.303 R}\left(\frac{1}{T}\right)+\log A \tag{TV-14}
\end{equation*}
$$

 است نــــمودالر

 A

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 دست آرود:

$$
\begin{aligned}
-\frac{E_{a}}{2.30 R} & =-5350 \mathrm{~K} \\
E_{a} & =(5350 \mathrm{~K})(2.30)[8.31 \mathrm{~J} / \mathrm{K} \cdot \mathrm{moll})] \\
& =102,000 \mathrm{~J} / \mathrm{mol}=102 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

شكل
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
(E_{a} (Y, (Y|A....)

آرنيوس مشهور است

 مو فقبتأميزند (شككل

 آرنيوسي فنط بِي معادلُ تقريبى است، ولى در اغلب موارد تقريب بـسيار خوبى است

تعيينكنـنـة سرعت بود (شكل أ - أ را بينيند)،

$$
k=\frac{k_{1} k_{3}}{k_{2}}
$$

$$
k=\frac{A_{1} e^{-E_{3} / R T} A_{3} e^{-E_{3} / R T}}{A_{2} e^{-E_{3} / R T}}
$$

$$
k=\frac{A_{1} A_{3}}{A_{2}} e^{-\left(E_{1}+E_{3}-E_{2}\right) / R T}
$$

در نتيجه بְارامنرهاى آرنيوس براى ثابت سرعت كلّى عبارتند از: $A=\frac{A_{1} A_{3}}{A_{2}}$

$$
E_{a}=E_{1}+E_{3}-E_{2}
$$

 با
 اكر از معادلة آرنيو سي لكاريتم طبيعى بگيريم، داريم،

$$
\begin{equation*}
\ln k=\ln A-\frac{E_{a}}{R T} \tag{x+14}
\end{equation*}
$$

$$
\begin{aligned}
T_{1} & =300 \mathrm{~K} \\
T_{2} & =400 \mathrm{~K} \\
k_{1} & =2.6 \times 10^{-8} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~s}) \\
k_{2} & =4.9 \times 10^{-4} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~s})
\end{aligned}
$$

مثدار R ابـرابـر بـا (
(HT- IH)

$$
\begin{aligned}
E_{s} & =2.30 \mathrm{R}\left(\frac{T_{1} T_{2}}{T_{2}-T_{1}}\right) \log \left(\frac{k_{2}}{k_{1}}\right) \\
& =2.30[8.31 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol})]\left(\frac{(300 . \mathrm{K})(400 . \mathrm{K})}{400 \mathrm{~K}-300 . \mathrm{K})}\right) \log \left(\frac{4.9 \times 10^{-4} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~s})}{2.6 \times 10^{-8} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~s})}\right) \\
& =[19.1 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol})](1200 \mathrm{~K}) \log \left(1.88 \times 10^{4}\right) \\
& =(22,900 \mathrm{~J} / \mathrm{mol})(4.28) \\
& =98,000 \mathrm{~J} / \mathrm{mol}=98.0 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

9-14

اجازْ بـههيـلـ،

$$
\begin{aligned}
& T_{1}=400 . \mathrm{K} \\
& T_{2}=500 \cdot \mathrm{~K} \\
& k_{1}=4.9 \times 10^{-4} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~s}) \\
& k_{2}=J .9 \\
& E_{a}=9.8 \times 10^{4} \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
\log \left(\frac{k_{2}}{k_{1}}\right) & =\frac{E_{a}}{2.30 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right) \\
& =\frac{9.8 \times 10^{4} \mathrm{~J} / \mathrm{mol}}{2.30[8.31 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol})]}\left(\frac{500 . \mathrm{K}-400 . \mathrm{K}}{(400 . \mathrm{K})(500 . \mathrm{K})}\right) \\
& =\left(5.13 \times 10^{3} \mathrm{~K}\right)\left(5.00 \times 10^{-4} \mathrm{~K}\right) \\
& =2.57
\end{aligned}
$$

$$
\frac{k_{2}}{k_{1}}=\operatorname{antilog} 2.57=3.7 \times 10^{2}
$$

$$
\begin{aligned}
k_{2} & =\left(3.7 \times 10^{2}\right) k_{1} \\
& =\left(3.7 \times 10^{2}\right)\left[4.9 \times 10^{-4} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~s})\right] \\
& =0.18 \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~s})
\end{aligned}
$$

$$
\log A=13.51
$$

$$
A=3.2 \times 10^{13} / \mathrm{s}
$$

 بر برابر با

$$
\begin{equation*}
\log k_{2}=\log A-\frac{E_{a}}{2.303 R T_{2}} \tag{KA-IF}
\end{equation*}
$$

9

$$
\begin{align*}
& \log k_{1}=\log A-\frac{E_{a}}{2.303 R T_{1}} \tag{rQ-14}
\end{align*}
$$

$$
\begin{align*}
& \log k_{2}-\log k_{1}=-\frac{E_{a}}{2.303 R T_{2}}+\frac{E_{a}}{2.303 R T_{1}} \quad\left(\Gamma_{\cdot}-1 \Psi\right) \\
& \text { جون ن } \\
& \log \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{2.303 R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
& \log \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{2.303 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right) \tag{Tr=14}
\end{align*}
$$

$$
\begin{aligned}
& \text { به دست مى آيلي: } \\
& E_{a}=2.303 R\left(\frac{T_{1} T_{2}}{T_{2}-T_{1}}\right) \log \left(\frac{k_{2}}{k_{1}}\right) \quad\left(T T_{-} \mid \Psi\right) \\
& \text { A - 1Y م } \\
& \text { معادله سرعت واكت } \\
& 2 \mathrm{NOCl}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \\
& \text { به صورت زير است: } \\
& \mathrm{Cl}_{2}{ }_{2}=k[\mathrm{NOCl}]^{2} \\
& \text { و } \% \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { اين واكنش بـه دست آوريد. }
\end{aligned}
$$

ميتوان

$$
X+Y \longrightarrow X Y
$$

1. $\mathrm{X}+\mathrm{C} \longrightarrow \mathrm{XC}$
2. $\mathrm{XC}+\mathrm{Y} \longrightarrow \mathrm{XY}+\mathrm{C}$

 بيان ميكند: ا ـ تغيير أَتاليى، واكنش كاتاليز نشلـه است

نعاللسازى مرحلةٌ رنتا

 نسبتأ بزركى در kمیشود. البته هر تغييرى در ثابت سرعت، در در بر سرعت

$$
\begin{aligned}
& \text { Fook K K Kook K } \\
& \text { D00 K K } 400 \mathrm{~K}
\end{aligned}
$$

 دماى بايين بيشتر تحت تأثير قرار مىيكيرد تا در دماى با بالا.

 انزُى فعالسازى به صورت زير است:

$$
\begin{aligned}
& E_{a}=9 \cdot \mathrm{~kJ} / \mathrm{mol} \quad \text { سرعت تقريباً دو برابر میثـودود }
\end{aligned}
$$

18

 مجاورت دماي هايين انجام مى شود:

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \xrightarrow[\mathrm{MnO}_{2}]{\mathrm{L}_{0} \mathrm{~S}} 2 \mathrm{KCl}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

 كاتاليزور بر استوكيو مترى كلى واكنش اثرى ندارد. در بايان واكـنش،

وسيلٌ يبيوندهايىى كه از لحاظ قدرت با يِيوندهاى موجود در تركيبات

 شده است: مراحل مكانيسم بم قرال زير است:

جاب ميشوند:

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\text { on } \mathrm{Au})
$$

Y م

N

$$
\mathrm{N}_{2} \mathrm{O}(\text { on } \mathrm{Au}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{on} \mathrm{Au})
$$

Au

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

است، تجزيه ميشرود:

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

覑

$$
\mathrm{O}(\mathrm{~g})+\mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

فراورددههاي پايانى واكتش،

كاتاليزنشده، حلود

كلر به اتمهماى كلل تجزيه مى شوند:

$$
\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}(\mathrm{~g})
$$

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{ClO}(\mathrm{~g})
$$

$$
2 \mathrm{ClO}(\mathrm{~g}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 (TF• kJ/mol)

 تو لبد شده، متان (CH) (CH)، است:

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Ni}} \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{ZnO}^{2} / \mathrm{Cr}_{2} \mathrm{O}_{3}} \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

 میشود. كاز CO و هيدروكرينزها به به

 مكانيسم رثـا منـجو شورد.

$$
\mathrm{O}(\text { on } \mathrm{Au})+\mathrm{O}(\text { on } \mathrm{Au}) \longrightarrow \mathrm{O}_{2}(\mathrm{~g})
$$

 المتا $\mathrm{lrokl} / \mathrm{mol}$ (TfokJ/mol)

= = =رعت

 جلب شـه بر سطع طلا ندارد.

 تغيير داد. در سنتز آمونياك،

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Fe}} 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

اثنزايش مى دهند.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Pt}} 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

الحتمالاً، با تشكيل بلاتين آرسنيد بـر سطع تلاتين، فعاليت كاتاليزورى آن از بين ديرود.

 , راكتش" واك:
سربحتر غوأهـلـ برد.

.

"

 تغيير ميكند.

 Enzyme
 . Tr IF , T T - If First - order reaction

 مادة

 بستي
. 1 - IF SHeterogeneous catalyst
 Homogeneous catalyst
 Molecularity
 . Order of a chemical reaction (T - II بكا واكت Rate constant معاقلة سرع عت. Rate-determining step

مفاهيمه كليلوى

 SActivated complex
كذار نين تاميلد شیشود.

S Slable .
 فعالـ اسازیى استا
Catalyst
 N. Aك Chain mechanism

 براي هرجانه الول را دارد. . Chemical adsorption

 5 Chemical kinetics . (بظرئة برخور2 (بشخن Collision theory

توضبح شي دها.

 (i) Energy of activation
 ：ان

 ＝$=k[\mathrm{~A}]^{\top}[\mathrm{B}]$
نظر Transition state theory

 سرعت＝k ، الست．

S Rate equation
 Siloslon Reaction intermediate

 Reaction mechanism

 Reaction rate

 ．
＂نحلو ط از
जidab

$$
\mathrm{NO}_{2} \mathrm{Cl}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{ONCl}(\mathrm{~g})
$$

，
 ．شـخ
药 A I If

> ثلظت و زمان 51, 9 - 14

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

 برابر S
 ا 0 ا 1 ．．mol／L

共 آمهـ آست

位
\&

$\text { C } \underset{(\mathrm{mollLs})}{\text { تشكيل }}$	$\begin{gathered} {[\mathrm{B}]} \\ (\mathrm{mal} / \mathrm{L}) \end{gathered}$	$\begin{gathered} {[\mathrm{A}]} \\ (\mathrm{moll}) \end{gathered}$
$0 r_{0} \times 10^{-4}$	0 0．to	0.0%
$1, Y=\times 10^{-r}$	0,090	0 ， 90
$Y, y=\times 10^{-Y}$	$0,04$.	$00^{\circ} 90$

居

g

 هرتبه：يكا：A

$2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{ONCl}_{(\mathrm{g})}$

$$
\begin{aligned}
& \text { C [B] } \\
& (\mathrm{mol} / \mathrm{Ls}) \quad(\mathrm{mol} / \mathrm{L}) \quad(\mathrm{mol} / \mathrm{L}) \\
& y_{j} \times 10^{-\psi} \quad 0,10 \quad \text { o, } 0 \text {. } \\
& r \lambda \lambda \times 10^{-r} \quad 0 \text {, }{ }^{-r} 0, \rho_{0} \\
& 1, \mu \times 10^{-r} \quad 0, r_{0} \quad 0, r_{0}
\end{aligned}
$$

$$
2 \mathrm{Cl}_{2} \mathrm{O}_{7}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g})
$$

زمان（دقيقة）

－	0 Jog 0
10，0	－0．4Ar
raso	－0．frl
00，${ }^{\circ}$	－． 0 r90
$90 \% 0$	－eras
vrjo	－ر० ¢¢

مكانيسم واكنش هانـ، كاتاليزورها ：Yا，14

$$
2 \mathrm{ICl}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{I}_{2}(\mathrm{~g})+2 \mathrm{HCl}_{(\mathrm{g})}
$$

حر دمايى بالاتر از

 ：YY ـ If

$$
2 \mathrm{NO}_{2} \mathrm{Cl} \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

طى سراسل زير صورت مسيكيرد：

 HM－14\＃
$\mathrm{N}_{2} \mathrm{O}_{5}$ in مكانيسم يبشنهاد شده به صورت زير است：

$$
\mathrm{N}_{2} \mathrm{O}_{5} \xrightarrow{k_{1}} \mathrm{NO}_{2}+\mathrm{NO}_{3}
$$

$$
\mathrm{NO}_{2}+\mathrm{NO}_{3} \xrightarrow{k_{2}} \mathrm{~N}_{2} \mathrm{O}_{5}
$$

$$
\mathrm{NO}+\mathrm{NO}_{3} \xrightarrow{k_{3}} 2 \mathrm{NO}_{2}
$$

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \longrightarrow 3 \mathrm{NO}_{2}(\mathrm{~g})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}+\mathrm{A} \xrightarrow{k_{1}} \mathrm{~A}^{*}+\mathrm{A} \\
& A^{*}+A \xrightarrow{k_{2}} A+A \\
& A^{*} \xrightarrow{k_{3}} \text { فرإردردهم }
\end{aligned}
$$

$$
\mathrm{S}_{2} \mathrm{~F}_{10}(\mathrm{~g}) \longrightarrow \mathrm{SF}_{6}(\mathrm{~g})+\mathrm{SF}_{4}(\mathrm{~g})
$$

和
 －بوr بر بـو
 تهربـ $S_{Y} F_{1}(\mathrm{~g})$（g）

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

بك واكتئ مرتبه $\mathrm{NO}_{Y}(\mathrm{~g})$（gK．

$$
2 \mathrm{NOCl}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{(}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

筷
 80
 نيبين كَيد．

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow+\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 $C_{\star} H_{A}(\mathrm{~B})$（ 1 A ـ $1 \uparrow$
$\mathrm{C}_{4} \mathrm{H}_{\mathrm{H}}(\mathrm{g}) \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$

 $H \mathrm{r} .{ }^{\circ} \mathrm{C} \rho \mathrm{SO}_{Y} \mathrm{Cl}_{\mathrm{r}}(\mathrm{g})$（g）

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

زان（دقيقه）
。

$$
1.0
$$

Yoo ojبFPO

$$
Y_{0} \quad 0,0 r_{0} Y
$$

$$
0.0 \quad 0,0 \times T r
$$

Voo opolva

با استفاده از اين حادهها و با رسم نموداز تعيين كنبـ كها آبا اين راكتنش نسبت بـ

NO N ．A

$$
2 \mathrm{NO}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 N：Sl，Tr－If

$$
\mathrm{HI}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{I}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

 جقدر است؟
保

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

نسـبت بـ بـ

 ，T4－If

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

$$
\begin{aligned}
& \text { 仿 }
\end{aligned}
$$

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HBr}(\mathrm{~g})
$$

نسـبت بـه
 سرعت برابر／8／8程

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 سرعت برابر／8／8／8

 نسالسازيى اين واكتش را ماكاسبـ كتين．
 سرعت آله ها برابر میینود، דتقدر أست؟
هسـائل طبثبدبندينشـده
If
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})$
نسبت با

 متتهى میشود．

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

 برايى آن يـئهواد شُده است：

$$
\begin{aligned}
& \mathrm{NO}+\mathrm{O}_{2} \xrightarrow{k_{1}} \mathrm{NO}_{3} \\
& \mathrm{NO}_{3} \xrightarrow{k_{2}} \mathrm{NO}+\mathrm{O}_{2} \\
& \mathrm{NO}_{3}+\mathrm{NO} \xrightarrow{k_{3}} 2 \mathrm{NO}_{2}
\end{aligned}
$$

竍

$$
\begin{aligned}
& 2 \mathrm{O}_{3}(\mathrm{~g}) \longrightarrow 3 \mathrm{O}_{2}(\mathrm{~g}) \\
& \text { به طور نجربى به صورت زير نعيين شـده است: } \\
& \mathrm{O}_{3}=k \frac{\left[\mathrm{O}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{O}_{3} \xrightarrow{k_{1}} \mathrm{O}_{2}+\mathrm{O} \\
& \mathrm{O}_{2}+\mathrm{O} \xrightarrow{k_{2}} \mathrm{O}_{3} \\
& \mathrm{O}+\mathrm{O}_{3} \xrightarrow{k_{3}} 2 \mathrm{O}_{2}
\end{aligned}
$$

 （ 1 Y

 خود را تيبين كنبد．信

 رسم كنيد．

معادلات سرعت و دما （14

$$
\mathrm{NO}_{2} \mathrm{Cl}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{ONCl(g)}
$$

$\mathrm{NO}_{\mathrm{Y}} \mathrm{Cl}$ براير A
范

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

 (4 = If

 جهـ حـد است؟

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

نسبت به

 , 900 K (الفحاسبه كنبـد. H:St, FY_ IF

 شوايطى بر يا (ديناميك) است كه دز آن دو تغيير مخالف با با سرعت برابر

زُ 2

شـده امست. در زمان "t، تعادال فور مى رسلد.

$$
ت \operatorname{cic}_{f}\left[\mathrm{~A}_{2}\right]\left[\mathrm{B}_{2}\right]
$$

و سرعت واكنش برگشت به صررت زير اسـت،

$$
\text { = }=k_{r}[A B]^{2}
$$

در حالت تعادل، ايني دو سرعت برابي هیشونلد، بنابراين،

نيترورٔن و هيلدرؤن، در شرايط مـناسب، بـا هـم تـركيب مـيشونـل و آمونياى توليد میكتند:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

هيلرورfن بهدست میدهـل:

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

اين واكنش برگّشتپٍ ير الست و معادلهُ واكنش را بهصورت زير مىتوان نوشت:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

يّيكان دوتاييى (

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{~g})
$$

 فرض كنيد مخلوطى از

 سرعت واكنش رفت كاهش میيابلد. در آغاز آزمايش واكثش يركشت نمى تو اند انجام شو د، زيرا هنريز

 برگشت آهسته است (به علت پإيين بـودن غـلظلت AB) و بـه تـلـريج سرعت میگيرد.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad(\mathrm{Q}-10)
$$

د دعادلٌ مربو ط بـ ثابت تعادل، حنين است:

$$
\begin{equation*}
K=\frac{[\mathrm{HCl}]^{4}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\left[\mathrm{Cl}_{2}\right]^{2}} \tag{10-10}
\end{equation*}
$$

 براى واكنشهاى داراى بيش الز يك مرحله نيز صادق است؟؟ پاسِخ
مثبت استش زير را درنظر بيريديد،

$$
2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

كه معادلٌ ثابت سرعت آن به ترار زير است،

$$
\begin{equation*}
K=\frac{\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{NO}_{2} \mathrm{Cl}\right]^{2}} \tag{11-10}
\end{equation*}
$$

إين واكنش با مكانيسمى دو مرحلهاي انجام مىشـود،

1. $\mathrm{NO}_{2} \mathrm{Cl} \xlongequal[k_{1}^{\prime}]{\stackrel{k_{1}}{k_{1}^{\prime}}} \mathrm{NO}_{2}+\mathrm{Cl}$
2. $\mathrm{NO}_{2} \mathrm{Cl}+\mathrm{Cl} \stackrel{k_{2}}{\stackrel{k_{2}^{\prime}}{2}} \mathrm{NO}_{2}+\mathrm{Cl}_{2}$

 مشخص كنتدهُ مراحل إنـ.

 مراحل مكانيسم بايد در تعادل باشلد. بنابراينن،

$$
\begin{align*}
& K_{1}=\frac{k_{1}}{k_{1}^{\prime}}=\frac{\left[\mathrm{NO}_{2}\right][\mathrm{Cl}]}{\left[\mathrm{NO}_{2} \mathrm{Cl}\right]} \\
& K_{2}=\frac{k_{2}}{k_{2}^{\prime}}=\frac{\left[\mathrm{NO}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{NO}_{2} \mathrm{Cl}\right][\mathrm{Cl}]}
\end{align*}
$$

$K_{1} K_{2}=\frac{k_{1} k_{2}}{k_{1}^{\prime} k_{2}^{\prime}}=\frac{\left[\mathrm{NO}_{2}\right][\mathrm{Cl}]}{\left[\mathrm{NO}_{2} \mathrm{Cl}\right]}\left[\frac{\left.\mathrm{NO}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{NO}_{2} \mathrm{Cl}\right][\mathrm{Cl}]}=\frac{\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{NO}_{2} \mathrm{Cl}\right]^{2}}\right.$
كه با معادله ثابثت تعادل بهدست آمده از معادلة تغيير كلى (يعنى معادله كا 10 - 1 1) برابر است. در اين مورد، ثابت تعادل مربوط به تغيير كلّي برابر با حاصل ضرب ثابتهاى تعادل هر يكى از مراحل است است

$$
K=K_{1} K_{2}
$$

اين معادله را میتوان به صورت زير تغيير داد،

$$
\frac{k_{f}}{k_{r}}=\frac{[\mathrm{AB}]^{2}}{\left[\mathrm{~A}_{2}\right]\left[\mathrm{B}_{2}\right]}
$$

ثابتسرعتو اكنشرفت،،ينى يعنى

$$
\begin{equation*}
\frac{k_{f}}{k_{r}}=K \tag{1-10}
\end{equation*}
$$

بنايراين

$$
K=\frac{[\mathrm{AB}]^{2}}{\left[\mathrm{~A}_{2}\right]\left[\mathrm{B}_{2}\right]}
$$

مقدار مددى Kبا دما تغيير مىكند. شممار تركيببهاى غلظتلى مربوط
 برإي هر سبيستم در حال تعادل در يك دمالى معين، به
 بهطور كلّى براى هر واكثنى بركشتشيذير،

$$
\begin{equation*}
w \mathrm{~W}+x \mathrm{X} \rightleftharpoons y \mathrm{Y}+z \mathrm{Z} \tag{r-10}
\end{equation*}
$$

$$
K=\frac{[\mathrm{Y}]^{y}[\mathrm{Z}]^{z}}{[\mathrm{~W}]^{x}[\mathrm{X}]^{x}}
$$

 بد عنو ان مثالل، واكنت برگُثتيذير زير را درنظر بيُيريد، $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \quad(\mathrm{P}-10)$

مسادلة ثابت تعادل براى اين واكنش شيميايّى به قراز زير است:

$$
\begin{equation*}
K=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\left[\mathrm{Cl}_{2}\right]^{2}}{[\mathrm{HCl}]^{4}\left[\mathrm{O}_{2}\right]} \tag{0-10}
\end{equation*}
$$

$$
\begin{equation*}
y \mathrm{Y}+z \mathrm{Z} \rightleftharpoons w \mathrm{~W}+x \mathrm{X} \tag{9-10}
\end{equation*}
$$

معادله ثابت تعادل (كه به صورت 'K نشان داده مـيشود) بـهصورت زير است:

$$
\begin{equation*}
K^{r}=\frac{[\mathrm{W}]^{w}[\mathrm{X}]^{x}}{[\mathrm{Y}]^{y}[\mathrm{Z}]^{x}} \tag{v-10}
\end{equation*}
$$

$$
K^{\prime}=\frac{1}{K}
$$

در مثال ما (معادلدٌ 10 - ب ب)، فزم معكرس معادلث شيمياييى بـسصورت زير است:

$$
\begin{aligned}
& \text { سرعت }=\text { =سرعت } \\
& k_{f}\left[\mathrm{~A}_{2}\right]\left[\mathrm{B}_{2}\right]=k_{r}[\mathrm{AB}]^{2}
\end{aligned}
$$

$$
\begin{aligned}
K & =\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \\
& =\frac{\left(1.41 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)^{2}}{\left(4.27 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)} \\
& =4.66 \times 10^{-3} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Y Y 10 مشال

در ONCI (g) (1 j 1 ر

$$
2 \mathrm{ONCl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

مقدار

$ح$

居 $=0.0900(1.00 \mathrm{~mol})=0.090 \mathrm{~mol}$ ONCl
 غلظت ONCI در تعادل برابر است بـا با
$[\mathrm{ONCl}]=1.00 \mathrm{~mol} / \mathrm{L}-0.090 \mathrm{~mol} / \mathrm{L}=0.91 \mathrm{~mol} / \mathrm{L}$
 ضرايب معادل شيميايمى مى تو انْ به دست آّورد:

$$
2 \mathrm{ONCl} \rightleftharpoons \underset{0.090 \mathrm{~mol}}{2 \mathrm{NO}}+\underset{0.045 \mathrm{~mol}}{\mathrm{Cl}_{2}}
$$

 اين نسل راحلهائى براي (HI) ؛
K_{c} ل 10

$$
\mathrm{H}_{2}(\mathrm{~g})=\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

مقلدار

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=54.5
$$

مقدار عددى ثابت تعادل بايد بهصروت تجربي تعيين شود. اكي غلظت

معادلّ

 هخلوطهاى تعادنى واكنش زيو:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})=2 \mathrm{HI}(\mathrm{~g})
$$

1-10 10 10 براي واكنش زير						
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$						
$\begin{aligned} {\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] } & =4.27 \times 10^{-2} \mathrm{~mol} / \mathrm{L} \\ {\left[\mathrm{NO}_{2}\right] } & =1.41 \times 10^{-2} \mathrm{~mol} / \mathrm{L} \end{aligned}$						
هقدار						
$\mathrm{H}_{\gamma}(\mathrm{g})+\mathrm{I}_{\gamma}(\mathrm{g}) \rightleftharpoons \mathrm{¢} \mathrm{H} \mathrm{H}(\mathrm{g})$						جد. 10.
	غلظت هاى تعادلى ($\mathrm{mol} / \mathrm{L}$)			غلظت		
	[HI]	[I_{Y}]	$\left[\mathrm{H}_{7}\right]$	[HI]	$\left[\mathrm{I}_{\uparrow}\right]$	$\left[\mathrm{H}_{4}\right]$
Ot, ${ }^{4}$	0 -114	0×00150	$0 \cdot 00190$	$0 \cdot 100$	-	- -1
	-01T\%	-jolt.	- jurar	-		-0.04tr.r
arsa	-jolt	-jolto	-jorrk*	0.140	-	$0.00010+5$
Drja		-joit.	-...1\%	-.t.rVo	-jourvo	-..orvo.t

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

، $10 .{ }^{\circ} \mathrm{C} \mathrm{J}$

$$
K_{c}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=0.0415 \mathrm{~mol} / \mathrm{L}
$$

فـ

جهت رنت يا بركُتـت صورت مىگيرد؟

 مورد بحث عا،

$$
\begin{aligned}
Q & =\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]} \\
& =\frac{(0.0500 \mathrm{~mol} / \mathrm{L})(0.0300 \mathrm{~mol} / \mathrm{L})}{(0.100 \mathrm{~mol} / \mathrm{L})}=0.0150 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

دراين مورد،
 دارد. غلظُت اجسامي كه درصورت كسر هريبوط به Q Q قرال دارند (سمت

 سـ رابطة زير برثرار باشـد:位- 1
 برابر شبد.
Q $Q=K_{c}-Y$

 براير شود.

R براي واكنث

عبارتنداز:

$$
\begin{aligned}
{[\mathrm{ONCl}] } & =0.91 \mathrm{~mol} / \mathrm{L} \\
{[\mathrm{NO}] } & =0.090 \mathrm{~mol} / \mathrm{L} \\
{\left[\mathrm{Cl}_{2}\right] } & =0.045 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

روش تنظيم اين دادهها شامل تهييٌ جلولى از غلظتمهاي اوليه، تغييرات
 استخراج مقادير مربوط به سطر دوم (تحت تغيير) بهكار ميآيلـ.

	2 ONCl	2 No	+	Cl_{2}
: در آغاز :	$1.00 \mathrm{~mol} / \mathrm{L}$	-		-
:	-0.090 mol/	$0.090 \mathrm{~mol} / \mathrm{L}$	+	$0.045 \mathrm{~mol} / \mathrm{L}$
Jow jo:	$0.91 \mathrm{mol/L}$	$0.090 \mathrm{~mol} / \mathrm{L}$		$0.045 \mathrm{~mol} / \mathrm{L}$

بنابراين،
$K=\frac{\left[\mathrm{NO}^{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]}{[\mathrm{ONCl}]^{2}}$
$=\frac{(0.090 \mathrm{~mol} / \mathrm{L})^{2}(0.045 \mathrm{~mol} / \mathrm{L})}{(0.91 \mathrm{~mol} / \mathrm{L})^{2}}$
$=4.4 \times 10^{-4} \mathrm{~mol} / \mathrm{T}$

> K و موقعيت تعادل

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})
$$

$$
\cdots 00^{\circ} \mathrm{C} ر
$$

$$
K_{c}=\frac{\left[\mathrm{COCl}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]}=4.57 \times 10^{9} \mathrm{~L} / \mathrm{mol}
$$

 , $100^{\circ} \mathrm{C}, \mathrm{Cl}_{Y}$, CO

تقريباً كامل است.
براى واكنش

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

, IVo $0{ }^{\circ} \mathrm{C}$ ر

الز عقلدار بسيار كو جحك

دمـاى تـعقادل، ثــابت انست، مــقدار K
 H

 علظلتهاى تعادلى هستنـد.
F 10 F 10 /
هقدار
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$

FYO بهِ .

غلظت هايى (g)

$$
\begin{aligned}
& {\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=x} \\
& \text { مىدانتيم كه غلظت تعادلى HI برابر است با } \\
& {[\mathrm{HI}]=0.50 \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

 x احل هيكنيم:

$$
\begin{aligned}
K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} & =54.5 \\
\frac{(0.50 \mathrm{~mol} / \mathrm{L})^{2}}{x^{2}} & =54.5
\end{aligned}
$$

$$
\begin{aligned}
54.5 x^{2} & =0.25 \mathrm{~mol}^{2} / \mathrm{L}^{2} \\
x^{2} & =0.00456 \mathrm{~mol}^{2} / \mathrm{L}^{2} \\
x & =0.068 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

غلظتهالي تعادلى عبارتند از،

$$
\begin{aligned}
{[\mathrm{HI}] } & =0.50 \mathrm{~mol} / \mathrm{L} \\
{\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right] } & =0.068 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

ATV ${ }^{\circ} \mathrm{C}$

j

تص

 مايح دركير، در مقدار

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

 ثابتا تعادل بهصورت زير است،

$$
K_{c}=\left[\mathrm{CO}_{2}\right]
$$

درنتيجه در يكى دهاي ثابت، غلظت تعادلى جاملات، مقدلر معيني استا. ثابت تعادل واكنشي

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

به صورت زير بيان میى شود:

$$
K_{c}=\frac{\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}
$$

 به
1

 F

$$
\begin{aligned}
& Q=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \\
& =\frac{(0.125 \mathrm{~mol} / \mathrm{L})^{2}}{(0.0500 \mathrm{~mol} / \mathrm{L})^{2}(0.0300 \mathrm{~mol} / \mathrm{L})}=208 \mathrm{~L} / \mathrm{mol}
\end{aligned}
$$

ثابت تعادل بر حسب فشار جزئى،

$$
K_{p}=p_{\mathrm{CO}_{2}}
$$

براى تعادل زير،

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

مثدلار

$$
K_{p}=\frac{\left(p_{\mathrm{NH}_{3}}\right)^{2}}{\left(p_{\mathrm{N}_{2}}\right)\left(p_{\mathrm{H}_{2}}\right)^{3}}
$$

بين برترار است. واكنش زير رادر نظر بـيريد

$$
\begin{equation*}
w \mathrm{~W}+x \mathrm{X} \rightleftharpoons y \mathrm{Y}+z \mathrm{Z} \tag{11-10}
\end{equation*}
$$

$$
\begin{equation*}
K_{p}=\frac{\left(p_{\mathrm{Y}}\right)^{\gamma}\left(p_{\mathrm{z}}\right)^{z}}{\left(p_{\mathrm{W}}\right)^{x}\left(p_{\mathrm{x}}\right)^{x}} \tag{10-10}
\end{equation*}
$$

$$
P V=n R T
$$

در آن صورت، فـُـار جزئى هر كاز، يعنى p، برابر اسِت با

$$
p=\frac{n}{V} R T
$$

،W بلظت بحكاگاز بر حسب mol/L برابر با m/V است. در نتيجه، براى كاز

$$
\begin{gather*}
p_{\mathrm{w}}=[\mathrm{W}] R T \tag{19-10}\\
\left(p_{\mathrm{W}}\right)^{\mathrm{w}}=[\mathrm{W}]^{w}(R T)^{w} \tag{1~V-10}
\end{gather*}
$$

$$
\begin{equation*}
K_{p}=\frac{[\mathrm{Y}]^{v}(R T)^{y}[\mathrm{Z}]^{z}(R T)^{z}}{[\mathrm{~W}]^{\omega}(R T)^{\psi}[\mathrm{X}]^{x}(R T)^{x}} \tag{1A-10}
\end{equation*}
$$

$$
=\frac{[\mathrm{Y}]^{x}[\mathrm{Z}]^{x}}{[\mathrm{~W}]^{x}[\mathrm{X}]^{x}}(R T)^{+y+z-w-x}
$$

عبارت كسرى معادله آخر، برابر با

$$
K_{p}=K_{c}(R T)^{+y+z-w-x}, \quad(19-10)
$$

|كرُ معادلئ شيميا يـي واكنش را به صررت زير بخوانيم

$$
\begin{equation*}
w \mathrm{~W}+x \mathrm{X} \rightleftharpoons y \mathrm{Y}+z \mathrm{Z} \tag{15-10}
\end{equation*}
$$

بر حسب مقّادير مولى،

$$
\begin{aligned}
& y+z=\text { = }
\end{aligned}
$$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

هقدار
 مخلرط شرند، فلظّت مواد موجود دمر تعادل را بـدست آوريد.
 L (mol/L俍 در نتيجه،

$$
\begin{aligned}
& K_{c}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}=0.771 \\
& K=\frac{x^{2}}{(0.0100 \mathrm{~mol} / \mathrm{L}-x)^{2}}=0.771
\end{aligned}
$$

باكُرفتن جذر از دو طرف معادله، داريم:

$$
\begin{aligned}
\frac{x}{(0.0100 \mathrm{~mol} / \mathrm{L}-x)} & =0.878 \\
x & =0.0878 \mathrm{~mol} / \mathrm{L}-0.878 x \\
x & =0.00468 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

بنابراين، در حالت تعادل،
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]=0.0100 \mathrm{~mol} / \mathrm{L}-0.00468 \mathrm{~mol} / \mathrm{L}$ $=0.0053 \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=[\mathrm{CO}]=0.00468 \mathrm{~mol} / \mathrm{L}$
K_{p} ل 10

 برايى تعادل كلسيم كربنات

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
T=773 \mathrm{~K}
$$

$$
\begin{aligned}
& \text { بنابرايني، } \\
& K_{p}=K_{c}(R T)^{\Delta n} \\
& \left(1.50 \times 10^{-5} / \mathrm{atm}^{2}\right)=K_{c}\{[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol})](773 \mathrm{~K})\}^{-2} \\
& \left(1.50 \times 10^{-5} / \mathrm{atm}^{2}\right)=\frac{K_{c}}{(63.5 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol})^{2}} \\
& K_{c}=\left(1.50 \times 10^{-5} / \mathrm{atm}^{2}\right)\left(4.03 \times 10^{3} \mathrm{~L}^{2} \cdot \mathrm{~atm}^{2} / \mathrm{mol}^{2}\right) \\
& =6.04 \times 10^{-2} \mathrm{~L}^{2} / \mathrm{mol}^{2} \\
& \text { A- } 10 \text {. } 10 \\
& \text { براي واكشش } \\
& \mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})
\end{aligned}
$$

(g)

$$
\begin{aligned}
K_{p}=\frac{\left(p_{\mathrm{co}}\right)^{2}}{p_{\mathrm{co}_{2}}} & =167.5 \mathrm{~atm} \\
\frac{\left(p_{\mathrm{CO}}\right)^{2}}{0.100 \mathrm{~atm}} & =167.5 \mathrm{~atm} \\
\left(p_{\mathrm{CO}}\right)^{2} & =16.8 \mathrm{~atm}^{2} \\
p_{\mathrm{CO}} & =4.10 \mathrm{~atm}
\end{aligned}
$$

مـالJ 10 10
مقدار

$$
\mathrm{FeO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\begin{align*}
& \Delta n=(y+z)-(w+x)=+y+z-w-x(Y \cdot-10) \\
& \text { بنابراين } \\
& K_{p}=K_{d}(R T)^{\Delta n} \tag{Y}\\
& \text { فشار جزيُى بر حسب جوز، غلظت بر حسب مول بر بر ليـتر، R بـرابـر بـا بـا }
\end{align*}
$$

$$
\begin{aligned}
& \text { براى واكنش } \\
& \mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \\
& \text { مقدار } \Delta n \text { برابر 1+است. در نتيجه، } \\
& K_{p}=K_{c}(R T)^{+1} \\
& \text { براي واكثشر } \\
& \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g}) \\
& \text { مقدالر } \\
& K_{p}=K_{C}(R T)^{-1} \quad \downarrow \quad K_{p}=\frac{K_{c}}{(R T)} \\
& \text { براى واكتش } \\
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \\
& \text { مقدار } \\
& K_{p}=K_{d}(R T)^{0} \quad \zeta \quad K_{p}=K_{c} \\
& \text { مئال } 10 \text { - } \\
& \text { برای واكتش } \\
& 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
\end{aligned}
$$

$$
\begin{aligned}
& \text { دما را به دست آريريد. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\Delta n & =+1 \\
K_{p} & =K_{\mathrm{e}}(R T)^{+1} \\
& =(0.0271 \mathrm{~mol} / \mathrm{L})\{[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol})](1100 \mathrm{~K})\} \\
& =2.45 \mathrm{~atm}
\end{aligned}
\end{aligned}
$$

 دهد. اين كار را با مصرف هقدارى از

 هى شود كه موقعيت تعادل به سمت راست جا با به جا شده است است. الڭُ با افزّايش HI به سيستم، غلظت HI را ا القزايش دهيم، موقعيت

 مى مود و غلظت

 $\mathrm{CaO}(\mathrm{s}) 4$

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

 در نظل بكيريد:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

موتعيت تمادل ندارد. تعادلهاي مربوط بـ سيستمهاي هـي

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

 براى سيستمى كه فتط شامل مايعات و جامدات وات باشده اثر فشار بر

 اضانفى در دمـاي FeO(s) $1000{ }^{\circ} \mathrm{C}$ (s)

 CO بوابر با كاهش فشّار CO الست:

$$
\mathrm{FeO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{l})
$$: درآثاز :

تغنيبر :
در در: دادن :

$-x$	$+x$
$1.000 \mathrm{~atm}-x$	x

$$
\begin{aligned}
K_{p}=\frac{P_{\mathrm{CO}_{2}}}{P_{\mathrm{CO}}} & =0.403 \\
\frac{x \mathrm{~atm}}{1.000 \mathrm{~atm}-x} & =0.403 \\
x & =p_{\mathrm{CO}_{2}}=0.287 \mathrm{~atm} \\
1.000-x & =p_{\mathrm{CO}}=0.713 \mathrm{~atm}
\end{aligned}
$$

را 10

راستى، تغيير در يكى از شرإيط آزمايشن (مانتد فشار يا جما)، سبب جه
 IAAF

 1

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})=2 \mathrm{HI}(\mathrm{~g})
$$

$K_{c}\left(L^{r} / \mathrm{mal}^{\gamma}\right)$	$\left(^{\circ} \mathrm{C}\right) \mathrm{los}$
9,9	个o.
- J. 0	Yoo
a,0.4.	000
$0 ; 014$	900
	$\left.\Delta H^{\circ}=+4\right)$ jkJ
$K_{c}=K_{p}$	($\left.{ }^{\circ} \mathrm{C}\right) \mathrm{Las}$
	Voo
- $0^{9 r}$	Noo
1,54	400
1,64	1000

 حاود

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta H=+41.2 \mathrm{~kJ}
$$

 را هى تويسبیه.

$$
41.2 \mathrm{~kJ}+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

 بـ
 N 10 Le
 سهت ڤی (يعنى
 كسب c

$$
\text { كاهش هقدار } K_{\text {هـ شـبرد. }}
$$

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

 (T0 $0^{\circ} \mathrm{C}$

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H=-92.4 \mathrm{~kJ}
$$

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+92.4 \mathrm{~kJ}
$$

 مى مساند. اگر گرما اضافه شود (دماى سيستم بالا رود)، موقعيت تعادل

 كاتاليزور میتر اند سيستمى را زودتر به حالت تعادل بر ساند.

 در معادلئ مايعات خالص منظور نمىيشونـد.

 رإطة
位

 موقيت تعادلّ را تغير نمىدهـا.

جكيدهٔ مطالب

$$
\begin{aligned}
& w W+x X \rightleftharpoons y Y+z Z \\
& K=\frac{[Y]^{3}[Z]^{z}}{[W]^{\prime}[X]^{x}}
\end{aligned}
$$

إيجاد تعادل، تغيبرات فشّار، با حضور يكى كاثاليزورن تغيبرى نمىكند.

 اكگ,

Heterogeneous equilibrium
 Homogeneous equilibrium تعادل بين موادى كه همئ آنها در بكى ثاز باشندلـ. (Le Chatelier's principle

 . بهر واكثش (بخشي Reaction quotient, Q

مفاهيمه كليلى

 Chemical equilibrium

$$
\begin{align*}
& \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \\
& 2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
& 2 \mathrm{Ag}_{2}(\mathrm{~s}) \rightleftharpoons 4 \mathrm{Ag}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \tag{2}\\
& 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \tag{A}
\end{align*}
$$

(ب)

$$
\text { (}()
$$

تعادل شيهيايى، اصمل لوشاتليه
ا 10

$$
\begin{align*}
& 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \tag{النـ}\\
& 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \tag{ب}\\
& 2 \mathrm{~Pb}_{3} \mathrm{O}_{4}(\mathrm{~s}) \rightleftharpoons 66 \mathrm{PbO}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \tag{ج}\\
& \mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g}) \tag{a}\\
& 2 \mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
\end{align*}
$$

$\mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Ni} \sim \mathrm{CN}$.
 مول（g）
 10 10 ـ 10 در تعادل：

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

 مها
 ： 19 － 19

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

$$
\begin{aligned}
& \text { K }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
\end{aligned}
$$

ك $\left[\mathrm{H}_{y}\right]=0,0094 \mathrm{~mol} / \mathrm{L}$ دلـ

 وارد شُده ر تعادل زير برترار هُنده أستا．

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

號 10

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
2 \mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

（الف）غلظضتهاى نعادلى

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

 ． ： 10

$$
2 \mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 ا 10

 ثابتا تعادن بين 10 10 ثابت تعادل بين ：در تعادل：V－ 10

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

 و A－ 10

 الثزون كاتاتاليزور． ． 10
$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

 （ج）الفزو دذ（ ： 110

$$
\mathrm{NiO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Ni}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\text { (ج) الفزودن } \mathrm{CO}_{\mathrm{r}}(\mathrm{~g}) \text { (a) }
$$

: Jol تا

$$
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})
$$

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

碞
 ：If IO
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
五

$$
\begin{aligned}
& \mathrm{NiO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Ni}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

距 $700^{\circ} \mathrm{C}$ ，
 است．بـ هنكام برتراري تعادل：

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

HgO YY＿ 10 به منظكام برشرازى تعادل：

$$
2 \mathrm{HgO}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{Hg}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

فــار كل（مربور بـ بكازهاى تعاهل $10 \mathrm{H}_{Y} \mathrm{O}(\mathrm{g}) \mathrm{C}$ ） 10
 ：

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

 تفكبك تشده است：

$$
2 \mathrm{ONCl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

（ 10 به

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

 sind

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

¢

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

$1000^{\circ} \mathrm{C}$ ，o Jole $10 . K_{p}$ ． $10.0^{\circ} \mathrm{C}, 5 \mathrm{~K}_{\mathrm{c}}$
．

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

號
 ：در تعادل YF＝ 10

$$
2 \mathrm{IBr}(\mathrm{~g}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$

 ： 10

$$
\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrCl}(\mathrm{~g})
$$

院
 Valait $\boldsymbol{2}$ YV -10^{*}

$$
\mathrm{FeO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

 ：

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

秋 تعادل حجْدر است؟
＊＊ابت تعاد

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g}) .
$$

和

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

 $9 \in \cos _{p}, K_{c}$ － 0 ．

 كا كاليزور：

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

$$
\text { O ا } 10
$$

$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
和

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

 جز
 （ درصد مولى（g）（BCl

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

，در را 10 ． 1 Fs $0^{\circ} \mathrm{C}$

$$
2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 ． $10.0^{\circ} \mathrm{C}$

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

：－ 10

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

 ：Jala ga Yr－ 10

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})
$$

 جثلدر است؟
ر 10 ． $\mathrm{YVO}{ }^{\circ} \mathrm{C}$

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

俍
1000 C تمين كنيـ.

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

：Jolo 10

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

 ： 10

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

مسائل طبقهبندى sidale PV－ 10 تُسمیايمى با

｜ييوستها

＊يوست الف
（SI）دستًاه بينالمللى واحدها

SI			
SI 12 ！			
دん＊	pt		
sr	－		
SI slait g^{4}			
\％e		土⿹\zh4灬	sta
1.17		－تّ	T－
1.4		16.5	G－
10^{9}		－ 18	M－
10^{8}		－	K－
10\％		－	h－
1.1		－ 15	da－
10^{-1}		－	d－
1.05		－	－
10^{-r}			m－
10^{-9}		－2，	$\mu-$
10^{-4}		－	n －
1.00		－	$\mathrm{p}-$
1.0		－	f－
$1.0^{-1 / A}$	－） 0	آنو	a－

مقادير برخي ثابتها و ضرايب تبديل

\%		
	3	ثإبت
	N	
$0,191 \mathrm{Vr} \times 10^{-11} \mathrm{~m}$	a.	
$9,1090 r 0 \times 10^{-r \lambda_{g}}$	m	
1 1,90r19 $\times 10^{-14} \mathrm{C}$	ϵ	-19)
$4,54 \times 4.9 \times 10^{+} \mathrm{C}$	F	
	R	
A,T\FY I/ (K.mol)		
rryelral	-	,
$1,9 y+40 \% \times 10^{-r T g}$	-	
1,001890u		
9,gYclA $\times 10^{-r 7 J S}$	h	
1,gyreta $\times 10^{-r 4} g$	-	ن- ${ }^{\text {U }}$
1,00Vrygu		
r, $44 \times 9 \mathrm{YO} \times 1.0 \mathrm{~m}^{1 / \mathrm{s}}$	c	$x-20$,

يادآورى محاسبات رياضى

 مقادير دردسر آنرين استقاده مى شود. با استفاده از تشانيكّذارى علمىى،

 مثُبت يا منفى يا صفر استا

 خو اهد شد. مثلاً،

$$
\begin{aligned}
r q, 4 r q, \ldots \ldots, \ldots 0 \mathrm{~cm} / \mathrm{s} & =r, 9 q v q \times 10^{10} \mathrm{~cm} / \mathrm{s} \\
0, \ldots \ldots \ldots v v \mathrm{~cm} & =r, 0 \times 10^{-4} \mathrm{~cm}
\end{aligned}
$$

عمليات رياضى مربر ط به اين اعداد به صورت زير انجّام مى شودو.

نيز با هم جمع مى شوند:

$$
\begin{aligned}
\left(r, 2_{0} \times 10^{0}\right)\left(r, 0 \times 10^{r}\right) & =(r, 0 \times r, 0) \times 10^{0+r} \\
& =q_{j 0} \times 10^{v} \\
\left(r, 0^{\circ} \times 10^{v}\right)\left(0,0 \times 10^{-r}\right) & =(r, 0 \times 0,0) \times 10^{\gamma+(r)} \\
& =r 0 \times 10^{*} \\
& =r, 0 \times 10^{0}
\end{aligned}
$$

 مخرج به صورت جبرى ازاي نماى ها صورت كم میشمرد:

$$
\begin{aligned}
\frac{\varepsilon, \lambda 9 \times 10^{-v}}{r, r q \times 10^{r}} & =\left(\frac{\varepsilon, \lambda 9}{r, r \varphi}\right) \times 10^{(-r)-(+r)} \\
& =r, 00 \times 10^{-10}
\end{aligned}
$$

اعشارى بـ دست ميآيد:

$$
\begin{aligned}
\left(9, r 0 \times 10^{r}\right)+\left(r_{j} \times 100^{r}\right) & =\left(9,50 \times 10^{r}\right)+\left(0, r \cdot \times 10^{r}\right) \\
& =9,00 \times 10^{r}
\end{aligned}
$$

e ا- ا

 |است. درنتيجه،

$$
a^{*}=a \times a \times a \times a
$$

$$
a^{-\psi}=\frac{1}{a^{\psi}}=\frac{1}{a \times a \times a \times a}
$$

r ـ ـنها، كسرى از نوع n/1 است. مقدار n، فرجئ ريشئ بايه است.
به اين ترتيب؛

$$
\begin{aligned}
& a^{1 / r}=\sqrt{a} \\
& a^{1 / r}=\sqrt[r]{a}
\end{aligned}
$$

 است (عمليات ا و \mid). درنتيجه،

$$
a^{r / \varphi}=\sqrt{a^{r}}=\sqrt{a \times a \times a}
$$

هـ ـ نما، صفر استا. درصورتى كه بايه صفر نباشـلد، مقدلار عبارت برابر با امیشبد. به اين توتيب،

$$
a^{0}=1 \quad(a \neq \cdot)
$$

در معادلمهاى زيو، برخى از خو اص نماها خلاصه شـده أست.

1) $d^{m} a^{n}=a^{m+n} \quad$ بنابرابي $a^{F} a^{\gamma}=a^{q}$
r) $\left(a^{m}\right)^{n}=a^{m n n} \quad$ بنابراين \quad ($\left.a^{\dagger}\right)^{\top}=a^{\wedge}$
r) $(a b)^{n}=a^{n} b^{n} \quad$ بنابراين (a) $(a b)^{r}=a^{\Gamma} b^{r}$
2) $a^{m} / a^{n}=a^{m-\pi}$ بانباريان $a^{Q} / a^{r}=a^{r} ; a^{\top} / a^{0}=a^{-r}=1 / a^{r}$
a) $a^{n} / a^{n}=1 \quad$ بنابراين $a^{r} / a^{r} / a^{r}=1$

 داريم. مثtلأ، ســرعت سـير نـور در خـلأ، ، . H_{+}با
 زير را درنظر بكيريد،

$$
\text { rjoro } \times 10^{1 r}
$$

خرن لگاريتهم، نمـا اسـت و

$$
\begin{aligned}
\log \left(r j \Delta F_{0} \times 10^{1 r}\right) & =\log r j \Delta F_{0}+\log 10^{1 r} \\
& =0, \Delta r q_{0}+1 r \\
& =1 r, \Delta r q_{0}
\end{aligned}
$$

مثال ديخر،

$$
\begin{aligned}
\log \left(r, \ldots \times 10^{-\Delta}\right) & =\log r, \ldots+\log 10^{-0} \\
& =0, r \cdot 1+(-0) \\
& =-r, 999
\end{aligned}
$$

 تعداد ارقام با معنى در مقدار اوليه استـ．

 اعشارى（موسوم به مانتيس）و يك علد صـحيع مثبت يا منغفى（مر سوم

(آتَت لتًارينم

$$
\text { 到 (r,y+0) }=0 j 0_{0} \times 10^{r}
$$

$$
r_{, V \%}=\log \left(0,0 \cdot \times 10^{\Gamma}\right)
$$

 بنويسيم كه مانتيس مثبت شو د．به اين ترتيب،

$$
\begin{aligned}
& =9,90 \times 10^{-+}
\end{aligned}
$$

$$
-r_{j} 10 \mathrm{~N}=\log \left(9,40 \times 10^{-4}\right)
$$

جهون لگاريتمهها، نما هستند، عمليات رياضهى مبرو ط به آنها نيز تابى

$$
\begin{aligned}
\sqrt{r, Y 1 \times 10^{-V}} & =\sqrt{Y Y, 1 \times 10^{-\lambda}} \\
& =Y, Y \cdot \times 10^{-r}
\end{aligned}
$$

$$
\begin{aligned}
\sqrt[r]{1, \lambda 9 \times 10^{\wedge}} & =\sqrt[r]{1,19 \times 10^{9}} \\
& =8,51 \times 10^{9}
\end{aligned}
$$

$$
\begin{aligned}
\left(1, r \varphi \times 1 \cdot 0^{F}\right)^{r} & =(1,5 \%)^{r} \times 10^{r(+*)} \\
& =1, \wedge 0 \times 10^{\wedge}
\end{aligned}
$$

$$
\begin{aligned}
\left(r, 0 \varphi \times 10^{-2}\right)^{r} & =(r, 0 \varphi)^{r} \times 10^{r(-0)} \\
& =\lambda, \gamma^{\top} \times 10^{-10}
\end{aligned}
$$

بهطر كلى،

$$
\left(a \times 10^{n}\right)^{p}=a^{p} \times 10_{0}^{p(n)}
$$

原

 هى شود）، لز إيا هـه ها الستفاده ميشود．اكر

$$
\begin{aligned}
a & =10^{n} \\
\log a & =n
\end{aligned}
$$

و، بها اين ترتيب،

$$
\begin{aligned}
& \log 1000=\log 10^{r}=r \\
& \log 0,01=\log 10^{-r}=-r
\end{aligned}
$$

㓌

 از اولين رقم فستند．لگاريتم 0

$$
e^{n}=\frac{r^{\prime}}{r} \frac{n}{r_{j} r_{0} r}
$$

مشالُ، مقدار
pوS \&洔

$$
a x^{\top}+b x+c=0
$$

 دو جواباند كه از نرمول درجئ دوم زير بهدست بي آيبد.

$$
x=\frac{-b \pm \sqrt{b^{r}-\uparrow \cdot a c}}{r a}
$$

$$
x^{\gamma}+0,00 x-0,10=0
$$

 $g!c=-0,10$
$x=\frac{-0, \theta_{0} \pm \sqrt{\left(0, \theta_{0}\right)^{r}-f(1)(-0,10)}}{Y(1)}$
$x=\frac{-0,00 \pm \pm 0,9 Y}{Y}$
$x=+0, y|-0, y|$
 فيز يكى غيرهمكين الست.

$$
\begin{aligned}
& \text { فرض كنيد xدر معادله زير }
\end{aligned}
$$

$$
\begin{aligned}
& =4,100
\end{aligned}
$$

قو اعد اسنفاده از نماهاست. موتع انجام هو يكا از عمليات زير، لگّاريتم

$$
\log (a b)=\log a+\log b \quad ب \quad \dot{b}
$$

$$
\log (a / b)=\log a-\log b p=z_{-}
$$

$$
\log \left(a^{1 / n}\right)=\frac{1}{n} \log a \text {, } 5, \ldots
$$

$$
\log \left(a^{n}\right)=n \log a \quad \text { _ }
$$

 $e=r, v \mid A r \wedge \ldots$

رإبله بين لگاريتمهاى معمولى و طبيعى به صورت زير أست، $\ln a=r, r_{0} \psi \log a$
 :
$\ln 9_{9}, \psi_{0}=Y, r_{0} \Gamma \log 9,0 \psi_{0}$

$$
=Y, K \circ T(0, V \lambda \mid 0)
$$

$$
=1, V Q \wedge 9
$$

لكُاريتم را براى بيان عبارت هايىى مـانند طبيعى است، نين مىتوان بهكار برد. از أنجا كـى
$\ln a=r, r \cdot r \log a$
$\log a=\frac{\ln a}{r, r \cdot r}$
g

$$
\ln e^{n}=n
$$

$$
\log e^{n}=\frac{n}{r, \mu \cdot \Gamma}
$$

T $\Delta^{\circ} \mathrm{C}$ وتانسيل الكترودهاى استانداود دو

Sund Jowa	
	$6^{\circ}(-15)$
$\mathrm{Ag}^{+}+e^{-}=\mathrm{Ag}$	
$\begin{gathered} \mathrm{Hg}^{Y+}+\mathrm{r} e^{-} \rightleftharpoons \mathrm{Hg} \\ r \mathrm{Hg}^{Y+}+\mathrm{re}^{-} \rightleftharpoons \mathrm{Hg}_{\gamma}^{Y+} \end{gathered}$	+o, NOT
	+0,4r.
$\mathrm{NQ}^{-}+\mathrm{YH}^{+}+\mathrm{re}^{-}=\mathrm{NO}+\mathrm{YH}_{Y} \mathrm{O}+$ + , 99	
$\mathrm{Br}_{r}+r e^{-} \rightleftharpoons \mathrm{rBr}{ }^{-}+1 \mathrm{j} \cdot 90 \mathrm{r}$	
$\mathrm{O}_{Y}+\gamma \mathrm{H}^{+}+\gamma e^{-} \rightleftharpoons Y \mathrm{H}_{r} \mathrm{O} \quad+1, H Y Q$	
$\mathrm{MnO}_{r}+\mathrm{YH}^{+}+\mathrm{re}^{-} \rightleftharpoons \mathrm{Mn}^{\top+}+\mathrm{rH}_{\mathrm{r}} \mathrm{O}+1, \mathrm{r}$	
$\mathrm{Tl}^{r+}+\mathrm{re}^{-}=\mathrm{Tl}^{+} \quad+1, r 0$	
$\mathrm{Cr}_{Y} \mathrm{O}_{V}^{r-}+1 \% \mathrm{H}^{+}+9 e^{-} \rightleftharpoons \mathrm{Y} \mathrm{Cr}^{r+}+\mathrm{VH}_{Y} \mathrm{O}+1, \Gamma \mathrm{r}$	
$\begin{array}{rlr} \mathrm{Cl}_{+}+\mathrm{re}^{-}=\mathrm{rCl}^{-} & +1, \mathrm{rOQO} \\ \mathrm{Au}^{r+}+\mathrm{re}^{-} \rightleftharpoons \mathrm{Au}^{+} & +1, \gamma \circ \mathrm{r} \end{array}$	
$\mathrm{PbO}_{Y}+4 \mathrm{H}^{+}+r \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}^{r+}+r \mathrm{H}_{Y} \mathrm{O}+1,400$	
$\mathrm{Au}^{++}+r \mathrm{c}^{-}=\mathrm{Au}+1,199$	
$\mathrm{Mn}^{++}+e^{-} \rightleftharpoons \mathrm{Mn}^{r+}$	
$\mathrm{MnO}_{+}^{-}+\mathrm{NH}^{+}+\mathrm{Or}^{-} \rightleftharpoons \mathrm{Mn}^{++}+\mathrm{H}_{+} \mathrm{O}++1,01$	
$\mathrm{Ce}^{++}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ce}^{r+}$ +	
$r \mathrm{HOCl}+\mathrm{rH}^{+}+\mathrm{re}^{-}=\mathrm{Cl}_{r}+\mathrm{HH}_{Y} \mathrm{O}$	
$\mathrm{PbO}+\mathrm{SO}_{4}^{Y-}+Y \mathrm{H}^{+}+\mathrm{Pe}^{-} \rightleftharpoons \mathrm{PbSO}_{4} \div \mathrm{H}_{Y} \mathrm{O}+1,9 \wedge Y$	
$\mathrm{Au}^{+}+e^{-}=\mathrm{Au}+1,991$	
$\mathrm{MnO}_{r}^{-}+\mathrm{FH}^{+}+\mathrm{re}^{-} \rightleftharpoons \mathrm{MnO}_{r}+\mathrm{rH}_{r} \mathrm{O}+1,990$	
$\mathrm{H}_{r} \mathrm{O}_{r}+r \mathrm{H}^{+}+r e^{-}=\mathrm{H}_{r} \mathrm{O}$	
$\mathrm{Co}^{++}+e^{-} \rightleftharpoons \mathrm{Co}^{r+}$	+ 1y0n
$\mathrm{S}_{r} \mathrm{O}_{\hat{r}}^{r-}+r e^{-}=\mathrm{SO}_{r}^{r-} \quad+r, a l$	
$\mathrm{O}_{r}+r \mathrm{H}^{+}+r e^{-} \rightleftharpoons \mathrm{O}_{r}+\mathrm{H}_{r} \mathrm{O}$	$+r, 0 \%$
$\mathrm{F}_{\sim}+\mathrm{Ye}^{-} \rightleftharpoons \mathrm{YF}$	+r,Ar
-	
$\mathrm{Al}(\mathrm{OH})_{+}^{-}+r \mathrm{e}^{-}=\mathrm{Al}+\times \mathrm{OH}^{-} \quad-r, r r$	
$\mathrm{Zn}(\mathrm{OH})_{+}^{r-}+\mathrm{re}^{-} \rightleftharpoons \mathrm{Zn}+\mathrm{Y} \mathrm{OH}^{-} \quad-1, r 10$	
$\mathrm{Fe}(\mathrm{OH})_{r}+\mathrm{re}^{-} \rightleftharpoons \mathrm{Fe}+\mathrm{r} \mathrm{OH}^{-} \quad-0, \lambda r Y$	
$\mathrm{Cd}(\mathrm{OH})_{r}+\mathrm{Ye}^{-} \rightleftharpoons \mathrm{Cd}+\mathrm{rOH}{ }^{-} \quad-\rho \lambda \mathrm{NO} q$	
$\mathrm{S}+\mathrm{r} \mathrm{e}^{-} \rightleftharpoons \mathrm{S}^{\gamma-} \quad-0,4 \psi V$	
$\mathrm{CrO}_{r}^{r-}+4 \mathrm{H}_{Y} \mathrm{O}+r e^{-} \rightleftharpoons \mathrm{Cr}(\mathrm{OH})_{r}+\mathrm{OOH}^{-}-0, \mathrm{O}^{r}$	
$\mathrm{NO}_{r}^{-}+\mathrm{H}_{T} \mathrm{O}+\mathrm{re}^{-} \rightleftharpoons \mathrm{NO}_{r}^{-}+\mathrm{YOH}$	
$\begin{aligned} \mathrm{NiO}_{r}+r \mathrm{H}_{r} \mathrm{O}+r e^{-} \rightleftharpoons \mathrm{Ni}(\mathrm{OH})_{r}+r \mathrm{OH}^{-} & -0, r q_{0} \\ \mathrm{HO}_{r}^{-}+\mathrm{H}_{r} \mathrm{O}+r e^{-} \rightleftharpoons r \mathrm{OH}^{-} & +0, \mathrm{NVA} \end{aligned}$	

نيم واكتش	$\hat{¢}^{\circ}\left(\mathrm{H}^{(2)}\right.$
$\mathrm{Li}^{+}+e^{-} \rightleftharpoons \mathrm{Li}$	-ry* χ_{0}
$\mathrm{K}^{+}+\mathrm{e}^{-}=\mathrm{K}$	-r,aro
$\mathrm{Rb}^{+}+e^{-}=\mathrm{Rb}$	- r,aro
$\mathrm{Cs}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cs}$	- r yar
$\mathrm{Ra}^{\mathrm{Y}+}+\mathrm{re}^{-}$- $\mathrm{Ra}^{\text {a }}$	-r,aip
$\mathrm{Ba}^{Y+}+\mathrm{Y}^{-}=\mathrm{Ba}$	-r,qor
$\mathrm{Sr}^{\gamma+}+\mathrm{Ye}^{-} \rightleftharpoons \mathrm{Sr}$	-r, MAA
$\mathrm{Ca}^{\mathrm{Y}+}+\mathrm{Ye}^{-}=\mathrm{Ca}$	-rasg
$\mathrm{Na}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Na}$	-r,yMf
$\mathrm{Ce}^{r+}+\mathrm{e}^{-}=\mathrm{Ce}$	- rjorr
$\mathrm{Mg}^{\gamma+}+\mathrm{Y}^{\boldsymbol{+}} \rightleftharpoons \mathrm{=} \mathrm{Mg}$	-r,rer
$\mathrm{Be}^{\text {r }}+\mathrm{re}^{-}=\mathrm{Be}$	- Mry
$\mathrm{Al}^{++}+\mathrm{re} e^{-} \rightleftharpoons \mathrm{Al}$	-1,994
$\mathrm{Mn}^{+}+\mathrm{r} \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}$	- 1, 1N0
$\mathrm{Zn}^{\mathrm{r}}+\mathrm{r} \mathrm{c}^{-}=\mathrm{Zn}$	- ejugra
$\mathrm{Cr}^{\text {r+ }}+\mathrm{re}^{-} \rightleftharpoons \mathrm{Cr}$	-. .jYF
$\mathrm{Ga}^{\text {rt }}+\mathrm{re}^{-}=\mathrm{Ga}$	- -jora
$\mathrm{Fe}^{\text {Y+ }}+\mathrm{Y}^{-}=\mathrm{Fe}$	-.,jfer
$\mathrm{Cr}^{r+}+e^{-}=\mathrm{Cr}^{\text {r }}$	--jerA
$\mathrm{Ca}^{++}+\mathrm{re}^{-} \rightleftharpoons \mathrm{Cd}$	- 0.jora
$\mathrm{PbSO}_{4}+\mathrm{re}^{-}=\mathrm{Pb}+\mathrm{SO}_{4}^{--}$	-.roms
$\mathrm{T}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Tl}$	-. jrak
$\mathrm{Co}^{\mathrm{r}+}+\mathrm{re} \mathrm{e}^{-}=\mathrm{Co}_{0}$	--. yyv
$\mathrm{H}_{\Psi} \mathrm{PO}_{+}+\mathrm{Y} \mathrm{H}^{+}+\mathrm{Y} \mathrm{e}^{-}=\mathrm{H}_{\Gamma} \mathrm{PO}_{\mu}+\mathrm{H}_{\varphi} \mathrm{O}$	-- .rye
$\mathrm{Ni}^{++}+\mathrm{re}^{-}=\mathrm{Ni}$	- .jro.
$\mathrm{Sn}^{\text {r }}+\mathrm{Y}^{\text {+ }} \mathrm{e}^{-}=\mathrm{Sn}$	-0, jry
$\mathrm{Pb}^{\text {+ }}+\mathrm{Ye}^{-} \rightleftharpoons \mathrm{Pb}$	--jハя
$Y \mathrm{H}^{+}+\mathrm{Y}^{-} \rightleftharpoons \mathrm{H}^{+} \mathrm{H}_{T}$	-0,0000
$\mathrm{S}+\mathrm{rH}^{+}+\mathrm{re}^{-} \rightleftharpoons \mathrm{H}_{\mathrm{r}} \mathrm{S}$	+.jier
$\mathrm{Sn}^{\text {t }}+\mathrm{re}^{-}=\mathrm{Sn}^{\text {r }}$ +	+0,10
$\mathrm{SO}_{\psi}^{r-}+\psi \mathrm{H}^{+}+r e^{-} \rightleftharpoons \mathrm{H}_{Y} \mathrm{SO}_{\mu}+\mathrm{H}_{\psi} \mathrm{O}$	+ojury
$\mathrm{AgCl}+e^{-} \rightleftharpoons \mathrm{Ag}+\mathrm{Cl}^{-}$	+0,0/TYY
$\mathrm{Cu}^{r+}+\mathrm{r}^{-}=\mathrm{Cu}$	+. $0^{\text {PTV }}$
$\mathrm{H}_{\mathrm{T}} \mathrm{SO}_{r}+\psi \mathrm{H}^{+}+r \mathrm{e}^{-} \rightleftharpoons \mathrm{S}+r \mathrm{H}_{r} \mathrm{O}$	+0,900
$\mathrm{Cu}^{+}+e^{-} \rightleftharpoons \mathrm{Cu}$	+ .jari
$\mathrm{I}_{\mathrm{r}}+\mathrm{re} \mathrm{e}^{-}=\mathrm{ri}^{-}$	+.
$\mathrm{MnQ}_{\varphi}^{-}+e^{-}=\mathrm{MnO}_{\psi}^{\%-}$	+ 0.0 ¢ 4
$\mathrm{O}_{Y}+\mathrm{YH}^{+}+\mathrm{re}^{-}=\mathrm{H}_{Y} \mathrm{O}_{r}$	+0, endt
$\mathrm{Fe}^{\text {rt }}+\mathrm{e}^{-}=\mathrm{Fe}^{\text {rt }}$	+ - juvi
$\mathrm{Hg}^{\dagger+}+\mathrm{Y}^{-} \rightleftharpoons^{\text {¢ }}$ Hg	+ - VMA

${ }^{1} \mathrm{~A} \times 10^{-\theta} \quad \mathrm{HC}_{Y} \mathrm{H}_{r} \mathrm{O}_{Y} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{Y} \mathrm{H}_{Y} \mathrm{O}_{T}^{-}$	است55
$4,0 \times 10^{-8} \quad \mathrm{HC}_{\gamma} \mathrm{H}_{\Delta} \mathrm{O}_{r} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{V} \mathrm{H}_{0} \mathrm{O}_{r}^{-}$	ك\%
$1,1 \times 10^{-r} \quad \mathrm{HClO}_{r} \rightleftharpoons \mathrm{H}^{+}+\mathrm{ClO}_{r}^{-}$	كrserser
$1, r \times 10^{-r} \quad \mathrm{HOCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OCN}^{-}$	C
$1, \mathrm{~A} \times 10^{-+} \quad \mathrm{HCHO}_{r}=\mathrm{H}^{+}+\mathrm{CHO}_{-}^{-}$)
$1,9 \times 10^{-0} \quad \mathrm{HN}_{r}=\mathrm{H}^{+}+\mathrm{N}_{r}^{-}$	هيدرازوبيك
$\mathrm{F}, 0 \times 10^{-10} \mathrm{HCN}=\mathrm{H}^{+}+\mathrm{CN}^{-}$	هـيلروبيبانيك
$9, \nu \times 10^{-r} \quad \mathrm{HF}=\mathrm{H}^{+}+\mathrm{F}^{-}$	هيلدورنلر هوربكى
Y, $\times 10^{-9} \quad \mathrm{HOBr}=\mathrm{H}^{+}+\mathrm{OBr}^{-}$	
$r, r \times 10^{-\lambda} \quad \mathrm{HOCl}=\mathrm{H}^{+}+\mathrm{OCl}^{-}$	هيهو كـر
${ }^{4} 0 \times 10^{-\%} \quad \mathrm{HNO}_{Y} \rightleftharpoons \mathrm{H}^{+}+\mathrm{NO}_{Y}^{-}$	310
$\begin{array}{ll} K_{a!}=Y \rho \times 10^{-r} & H_{r} \mathrm{AsO}_{r} \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}_{r} \mathrm{AsO}_{r}^{-} \\ K_{a r}=0, r \times 10^{-\lambda} & \mathrm{H}_{r} \mathrm{AsO}_{r}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HAsO}_{r}^{r-} \\ K_{a r}=r \times 10^{-1 r} & \mathrm{HAsO}_{r}^{r-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{AsO}_{r}^{r} \end{array}$	
$K_{a l}=\uparrow r \times 10^{-\gamma} \mathrm{CO}_{r}+\mathrm{H}_{r} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{r}^{-}$	
$K_{a r}=r_{, \lambda \wedge} \times 10^{-11} \quad \mathrm{HCO}_{r}^{-}=\mathrm{H}^{+}+\mathrm{CO}_{r}^{r-}$	
$K_{a 1}=1,1 \times 10^{-\gamma} \quad H_{r} \mathrm{~S}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$	
$K_{a r}=1,0 \times 10^{-1 \%} \quad \mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{r-}$	
$K_{a r}=\varepsilon_{j}^{T} \times 1_{0}^{-0} \quad \mathrm{HC}_{r} \mathrm{O}_{r}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{\gamma} \mathrm{O}_{+}^{Y-}$	
$K_{a,}=\gamma_{-} 0 \times 10^{-r} \quad{H_{r} \mathrm{PO}_{+} \rightleftharpoons}=\mathrm{H}^{+}+\mathrm{H}_{\gamma} \mathrm{PO}_{+}^{-}$	S
$K_{\Delta T}=\varphi, r \times 1{ }_{0}^{-\lambda} \quad \mathrm{H}_{r} \mathrm{PO}_{r}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HPO}_{r}^{r-}$	
$K_{a r}=1 \times 1_{0}^{-1 r} \quad \mathrm{HPO}_{r}^{r-}=\mathrm{H}^{+}+\mathrm{PO}_{\varphi}^{r-}$	
$K_{01}=1,9 \times 10^{-r} \quad \mathrm{H}_{r} \mathrm{PO}_{-}=\mathrm{H}^{+}+\mathrm{H}_{r} \mathrm{PO}_{r}^{-}$	
$K_{\text {ar }}=\mathrm{V} \times \mathrm{lo}^{-\mathrm{V}} \quad \mathrm{H}_{r} \mathrm{PO}_{r}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}_{r} \mathrm{PO}_{r}^{r-}$	
$S_{y}{ }^{\text {a }}$	-
$K_{\text {ar }}=1, \mathrm{~T} \times 10^{-r} \quad \mathrm{HSO}_{*}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{*}^{r-}$	
$K_{\text {al }}=1, r \times 10^{-r} \quad \mathrm{SO}_{r}+\mathrm{H}_{r} \mathrm{O}=\mathrm{H}^{+}+\mathrm{HSO}_{r}^{-}$	سرلفور2
$K_{a t}=0,5 \times 10^{-\lambda} \quad \mathrm{HSO}_{r}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{r}^{+-}$	

K_{b}	L0;
$1,4 \times 10^{-2}$	$\mathrm{NH}_{+}+\mathrm{H}_{+} \mathrm{O} \rightleftharpoons \mathrm{NH}_{F}^{+}+\mathrm{OH}^{-}$
4, 9×10^{-1}	$\mathrm{C}_{8} \mathrm{H}_{0} \mathrm{NH}_{r}+\mathrm{H}_{r} \mathrm{O} \rightleftharpoons \mathrm{C}_{\varphi} \mathrm{H}_{2} \mathrm{NH}_{r}^{+}+\mathrm{OH}^{-}$آلبن
$v, 4 \times 10^{-*}$	$\left(\mathrm{CH}_{r}\right)_{r} \mathrm{NH}+\mathrm{H}_{r} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{r}\right)_{r} \mathrm{NH}_{r}^{+}+\mathrm{OH}^{-}$م
$9,4 \times 10^{-v}$	$\mathrm{N}_{Y} \mathrm{H}_{*}+\mathrm{H}_{r} \mathrm{O} \rightleftharpoons \mathrm{N}_{T} \mathrm{H}_{\Delta}^{+}+\mathrm{OH}^{-}$هبدرازن
$0,0 \times 10^{-4}$	
$1,0 \times 10^{-9}$	$\mathrm{C}_{0} \mathrm{H}_{0} \mathrm{~N}+\mathrm{H}_{+} \mathrm{O}=\mathrm{C}_{0} \mathrm{H}_{0} \mathrm{NH}^{+}+\mathrm{OH}^{-}$ربدين)
$2,4 \times 10^{-0}$	$\left(\mathrm{CH}_{\sim}\right)_{+} \mathrm{N}+\mathrm{H}_{\varphi} \mathrm{O}=\left(\mathrm{CH}_{\Gamma}\right)_{\Gamma} \mathrm{NH}^{+}+\mathrm{OH}^{-}$-

	هتفنر
NaHCO_{+}	$1,2 \times 10^{-r}$
KClO_{*}	$1,8 \times 10^{-r}$
$\mathrm{K}(\mathrm{PlCl})$	$1,4 \times 10^{-9}$
$\mathrm{AgC}_{5} \mathrm{H}_{\mu} \mathrm{O}_{4}$	$r, r \times 10^{-r}$
AgCN	$1,9 \times 10^{-14}$
AgCNS	$1,0 \times 10^{-1 r}$

c)	
$\mathrm{AlF}_{5}^{\text {r- }}$	$13^{4} \times 10^{-5}$
$\mathrm{Al}(\mathrm{OH})_{+}^{-}$	1, $2 \times 10^{-r 4}$
$\mathrm{Al}(\mathrm{OH})^{\text {+ }}$	$v_{2} 1 \times 10^{-10}$
$\mathrm{Cu}\left(\mathrm{NH}_{\Gamma}\right)_{+}^{\text {+ }}$	v, 0×10^{-8}
$\mathrm{Cu}(\mathrm{CN})_{*}^{+-}$	$13+\times 10^{-19}$
$\mathrm{Cr}(\mathrm{OH})^{\text {+ }+}$	Q $\times 1.10^{-11}$
$\mathrm{Co}\left(\mathrm{NH}_{4}\right)^{\text {+ }}$ +	$12 \pi \times 10^{-a}$
$\mathrm{Cu}\left(\mathrm{NH}_{\mu}\right)_{\varphi}^{+{ }^{+}}$	$r_{2}+\times 10^{-r t}$
$\mathrm{Cu}\left(\mathrm{NH}_{+}\right)_{+}^{+}$	$1)^{2} \times 10^{-11}$
$\mathrm{Cu}\left(\mathrm{NH}_{+}^{+}\right)_{T}^{\text {+ }}$	+, 2×10^{-10}
$\mathrm{Cu}(\mathrm{NH})^{-}$	1×10^{-19}
$\mathrm{Cu}(\mathrm{OH})^{+}$	1×10^{-1}
$\mathrm{Pe}(\mathrm{CN})^{+-}$	$1 \times 10^{-r 0}$
$\mathrm{Fe}(\mathrm{CN})^{\text {r- }}$	$1 \times 10^{-k T}$
$\mathrm{Ph}_{(\mathrm{OH})^{+}}$	1, 0×10^{-1}
$\mathrm{HgBr}^{\text {- }}$	$r, r \times 10^{-r r}$
$\mathrm{HgCl}_{*}^{\text {r- }}$	$1,1 \times 10^{-18}$
$\mathrm{Hg}(\mathrm{CN})_{4}^{\text {-- }}$	$4 \times 10^{-* *}$
$1 \mathrm{gr\mid}{ }_{\text {+ }}$	$0, \pi \times 10^{-r 1}$
$\mathrm{Ni}\left(\mathrm{NH}_{+}^{+}\right)_{+}^{++}$	$1 \times 10^{-\lambda}$
$\mathrm{Ni}(\mathrm{NH})_{+}^{+}+$	$1,4 \times 10^{-9}$
$\mathrm{Ag}(\mathrm{NH})_{T}^{+}$	$9,0 \times 10^{-A}$
$\mathrm{Ag}(\mathrm{CN})_{\mathrm{T}}^{-}$	$1, \lambda \times 10^{-19}$
$\mathrm{Ag}(\mathrm{SO})^{\text {+- }}$	0×10^{-18}
$\mathrm{Ag}(\mathrm{SO})^{2-}$	$9,9 \times 10^{-10}$
$\mathrm{Zn}(\mathrm{NH})_{+}^{\text {r }}$	rex $\times 10^{-10}$
$\mathrm{Zn}(\mathrm{CN})_{+}^{++}$	$1, r \times 10^{-14}$
$\mathrm{Zn}(\mathrm{OH})_{+}^{\dagger_{+}^{+}}$	r, 9×10^{-19}
$\mathrm{Zn}(\mathrm{OH})^{+}$	i, 1×10^{-2}

$\mathrm{N}(\mathrm{OH})_{Y}$	$1,9 \times 10^{-19}$
$\mathrm{AgOH}\left(\mathrm{Ag}_{\mathrm{T}} \mathrm{O}\right)$	$Y, 0 \times 10^{-1}$
$\mathrm{Sr}(\mathrm{OH})_{\mathrm{Y}}$	$r, r \times 10^{-r}$
$\mathrm{Sa}(\mathrm{OH})_{Y}$	$r \times 10^{-r v}$
$\mathrm{Zn}(\mathrm{OH})_{r}$	$4,0 \times 10^{-1 / 2}$
	Lax
$\mathrm{PbI}_{\mathrm{Y}}$	$\wedge, r \times 10^{-9}$
$\mathrm{Hg}_{\mathrm{T}}{ }_{\mathrm{r}}{ }_{\mathrm{r}}$	r, $0 \times 10^{-r 9}$
AgI	$10 \times 10^{-1 \nu}$
	Lullijul
$\mathrm{BaC}_{4} \mathrm{O}_{4}$	$1,0 \times 10^{-1}$
$\mathrm{CaC}_{4} \mathrm{O}_{4}$	$1,5 \times 10^{-9}$
$\mathrm{PbC}_{5} \mathrm{O}_{4}$	$1, r \times 10^{-1 r}$
$\mathrm{MgC}_{Y} \mathrm{O}_{r}$	A, 5×10^{-9}
$\mathrm{Ag}_{\gamma} \mathrm{C}_{\gamma} \mathrm{O}_{4}$	$1,1 \times 10^{-11}$
$\mathrm{SrC}_{\uparrow} \mathrm{O}_{+}$	$0,8 \times 10^{-1}$
	la Uleaj
$\mathrm{Ba}_{\mu}\left(\mathrm{PO}_{*}\right)_{r}$	8×10^{-79}
$\mathrm{Ca}_{4}\left(\mathrm{PO}_{4}\right)^{\text {r }}$	$1, r \times 10^{-r r}$
$\left.\mathrm{Pb}_{\text {T }}(\mathrm{PO})_{T}\right)^{\text {r }}$	$1 \times 10^{-0 t}$
$\mathrm{Ag}_{r} \mathrm{PO}$	10×10^{-1}
$\mathrm{St}_{\mathrm{H}_{4}}\left(\mathrm{PO}_{+}\right)_{Y}$	$1 \times 10^{-r 1}$
	u-
BaSO_{4}	$1,0 \times 10^{-9}$
CaSO_{4}	r, $+\times 10^{-8}$
PbSO_{4}	$1, r \times 10^{-1}$
$\mathrm{Ag}_{4} \mathrm{SO}_{4}$	$1,5 \times 10^{-7}$
SrSO_{r}	$v, 8 \times 10^{-v}$
	Loundem
$\mathrm{Bi}_{\mathrm{T}^{\text {S }} \text { S }}$	$1,5 \times 10^{-v r}$
CdS	$1,0 \times 10^{-91}$
Cos	$0 \times 10^{-\pi}$
CuS	$1 \times 10^{-r v}$
Fes	1×10^{-14}
Pbs	$v \times 10^{-r 4}$
Mns	8×10^{-19}
HgS	$1,4 \times 10^{-07}$
NiS	$r \times 10^{-r}$
AgS	$0,0 \times 10^{-01}$
SnS	$1 \times 10^{-r i r}$
ZnS	$r, 0 \times 10^{-r r}$

هادههاى ترموديناميكى (Y

تا	$\Delta H_{j}^{\prime}(\mathrm{kJ} / \mathrm{mol})$	$\Delta G_{j}(\mathrm{k} / \mathrm{L} / \mathrm{mol}$)	s^{\prime} (J/K mol)	تركيب.	$\Delta H_{f}(\mathrm{k}, \mathrm{mol}$ (mol)	$\Delta \mathrm{G}_{j}$ (kJtmol)	s° ($3 / \mathrm{K} \mathrm{mol}$)
Ag(s)	0.0	00	42,72	$\mathrm{HgS}(\mathrm{s})$	-58.16	-48.82	77.8
AgBris)	-99.50	-93.68	10.71	$1_{2}(5)$	0.0	0.0	116.7
AgClis)	-127.0	-109.70	96,11	$\mathrm{K}(\mathrm{s}$)	0.0	0.0	63.6
$\mathrm{Ag}(\mathrm{s})$	-62.38	-66.32	114.2	$\mathrm{KBr}(\mathrm{s})$	-392.2	-379.2	96.44
$\mathrm{Ag}_{2} \mathrm{O}$	-30.8	-10.8	121.7	KCl(s)	-435.89	-408.32	82.66
Al(s)	0.0	0.0	28.3	$\mathrm{KClO}_{3}(\mathrm{~s})$	391.2	-2899	142.96
$\mathrm{Al}_{2} \mathrm{O}_{3}(5)$	-1668.8	-1576.4	51.00	$\mathrm{KFF}_{\text {(})}$)	-562.6	-533.1	66.57
Bais)	0.0	0.0	67	$\mathrm{KNO}_{3}(\mathrm{~s})$	-492.7	-393.1	132.93
$\mathrm{BaCl}_{2}(\mathrm{~s})$	-950.08	-810.8	126.	La(s)	0.0	0.0	57.3
$\mathrm{BaCO},(\mathrm{s})$	- 1218.8	-1138.9	112	Lifs)	0.0	0.0	28.0
$\mathrm{BaO}(\mathrm{s})$	-588.1	-528.4	70.3	$\mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s})$	- 1215.6	-1132.4	90.37
$\mathrm{BaSO}_{4}(\mathrm{~s})$	-1485.2	-1353.1	132.2	$\mathrm{LiOH}(\mathrm{s})$	-487.2	-443.9	50.
$\mathrm{Er}_{2}()$	0.0	0.0	152.3	Mg (a)	0.0	0.0	32.51
C(ciamond)	+1.88	+2.89	2.43	$\mathrm{MaCl}_{2}(\mathrm{~s})$	-641.8	-592.33	89.58
C(graphite)	$0: 0$	0.0	5.69	$\mathrm{MgCO}_{3}(\mathrm{sm})$	-1113.	-1029.	65.69
CCl4 (1)	-139.3	-68.8	214.4	$\mathrm{MgO}(8)$	-601.8	-569.6	26.8
CF. ${ }_{\text {(9) }}$)	-879.9	-635.1	262.3	$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$	-824.7	-633.7	63.14
$\mathrm{CH}_{4}(\mathrm{~g})$	-74.85	-59.78	186.2	Mn (s)	0.0	0.0	39.8
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	$+226.7$	+209.20	200.8	MnO(s)	-384.9	-363.2	60.2
$\mathrm{C}_{3} \mathrm{H}_{4}(\mathrm{~g})$	+52.3	+68.12	219.5	Mrions (s)	+520.9	- 466.1	53.1
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{O})$	-84.68	-32.89	229.5	$\mathrm{N}_{2}(9)$	0:0	0.0	191.5
$\mathrm{C}_{6} \mathrm{H}_{4}(1)$	+48.04	-129.66	150.8	$\mathrm{NH}_{4}(\mathrm{~g})$	-46.19	-16.7	192.5
$\mathrm{CH}_{3} \mathrm{COOH}()$	-487.0	-392.5	159.8	$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	- 315.4	2039	94.6
$\mathrm{CH}_{3} \mathrm{Cl}(9)$	-82.0	-58.5	234.2	NO(g)	+90.36	-86.e9	210.6
$\mathrm{CHCl}_{3}(1)$	-132.0	-71.5	202.9	$\mathrm{NO}_{2}(\mathrm{~g})$	+33.8	-51.84	240.5
$\mathrm{CH}_{3} \mathrm{NH}_{3}(\mathrm{~g})$	-28.0	-27.6	241.5	$\mathrm{N}_{2} \mathrm{O} / \mathrm{g}$	+81.55	+103.80	220.0
$\mathrm{CH}_{3} \mathrm{OH}(9)$	-201.2	-161.9	237.7	$\mathrm{N}_{2} \mathrm{O}+\|\mathrm{g}\|$	$+9.67$	+99.28	304.3
$\mathrm{CH}_{2} \mathrm{OH}^{(1)}$	-239.6	-166.2	120.8	NOCl(9)	+ 52.59	+86.36	283.8
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OH}(1)$	-277.63	-174.77	160.7	$\mathrm{Na}(\mathrm{s})$	0.0	0.0	51.0
$\mathrm{CO}(\mathrm{g})$	-110.5	-137.28	197.9	$\mathrm{NaCl}(\mathrm{s})$	411.0	-394.05	72.38
$\mathrm{CO}_{2}(9)$	-393.5	-394.39	213.6	$\mathrm{Na}_{2} \mathrm{CO} \mathrm{C}_{4}(\mathrm{~s})$	-1130.9	-1047.7	135.0
$\mathrm{COCl}_{2}(\mathrm{~g})$	-223.0	-210.5	289.2	NaFis)	-559.0	-541.9	59.8
$\mathrm{CS}_{3}(1)$	+87.86	$+69.6$	151.0	NaHCO, (s)	-947.7	-851.9	102.1
Ca (s)	0.0	0.0	41.6	NanO ${ }_{3}(\mathrm{~s})$	-424.8	-365.9	116.3
$\mathrm{CaCl}_{2}(\mathrm{~s})$	-795.0	-750.2	113.8	$\mathrm{NeOH}(5)$	-426.7	377.1	52.3
CaCO_{3} (s)	-1206.9	1128.76	92.9	Nils)	0.0	0.0	30.1
$\mathrm{CaO}(\mathrm{s})$	-635.5	-604.2	39.8	$\mathrm{NHO}(\mathrm{s})$	-244.3	-216.3	38.6
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}$]	-986.59	-896.76	76.1	$\mathrm{O}_{2}(\mathrm{~d})$	0.0	0.0	206.03
$\mathrm{CaSO}_{4}(\mathrm{~s})$	-1432.7	-1320.3	1067	$\mathrm{P}_{4}(\mathrm{~s}$, winite)	0.0	0.0	44.4
$\mathrm{Cl}_{2}(\mathrm{~g})$	0.0	0.0	223.0	$\mathrm{PCl}_{5}(\mathrm{~g})$	-308.4	-296.3	311.7
$\mathrm{Co}(5)$	0.0	0.0	28.5	$\mathrm{PCl}_{5}(\mathrm{a})$	-398.9	-324.6	352.7
$\mathrm{Cr}(\mathrm{s})$	0.0	0.0	23.8	$\mathrm{PH}_{3}(\mathrm{~g})$	+9.25	+ 18.24	210.0
$\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1128.4	-1046.8	81.2	POCl ${ }^{(11}$	-592.0	-545.2	324.6
$\mathrm{Cu}(\mathrm{s})$	0.0	0.0	33.3	$\mathrm{Pb}(\mathrm{s})$	0.0	0.9	64.9
CuO(s)	-155.2	-127.2	43.5		-277.0	-260.4	1615
$\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$	-166.7	-146.4	100.8	PbCl, (5)	-359.2	-314.0	136.4
CuS(s)	-48.5	- 98.0	665	$\mathrm{PbCO},(\mathrm{s})$	7000	626.3	1310
$\mathrm{CuSO}_{4}(\mathrm{~s})$	-769.9	-661.9	113.4	Pbols)	-217.9	-185.5	69.5
$\mathrm{F}_{2}(\mathrm{~g})$	0.0	0.0	203.3	PoO, (s)	276.6	219.0	76.6
$\mathrm{Fa}(\mathrm{s})$	0.0	0.0	272	Pa, O_{+}(5)	834.7	617.6	. 2113
$\mathrm{FeO}(\mathrm{s})$	-271.9	-255.2	60.75	$\mathrm{PaSO}_{4}(\mathrm{~s})$	9.18 .4	-811.2	147.3
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-822.2	-741.0	900	S(rhambic)	00	0.0	319
$\mathrm{Fe}_{4} \mathrm{O}_{4}(\mathrm{~s})$	-1117.4	-1014.2	146.4	So:(9)	-296.8	-300.37	248.5
$\mathrm{H}_{3}(\mathrm{~g})$	0.0	0.0	130.6	SOM, ${ }^{\text {a }}$	395.2	370.4	258.2
HErs(e)	-36.2	-53.22	198.5	Si(s)	00	0.0	18.7
HCl(g)	+9230	-05.27	188.7	Siclu (9)	6402	-572.8	2393
HCN(9)	+ 130.5	+ 120.1	201.79	SiF, (9)	- 1549.	- 1506.	284.5
HF(g)	-269.	-270.7	173.5	Siozis quartz)	-859.4	-805.0	41.8
$\mathrm{HI}(\mathrm{s})$	+25.9	+1.30	208.3	Sn (5)	0.0	0.0	51.5
$\mathrm{HNO}_{4}(1)$	-1732	-79.91	155.6	$\mathrm{SnCl}_{4}(1)$	-545.2	-474.0	2586
$\mathrm{H}_{2} \mathrm{O}(9)$	-241.8	-228.61	188.7	SnOis)	-286.2	-257.3	56.5
$\mathrm{H}_{2} \mathrm{O}(1)$	-285.9	-237.19	69.96	Sno.is)	-580.7	-519.7	52.3
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.2	-33.0	205.6	$\mathrm{Zn}(\mathrm{s})$	0.0	0.0	41.6
$\mathrm{H}_{2} \mathrm{SO}_{4}(1)$	-811.32	-687.5	156.9	2nO(5)	-348.0	-318.19	43.9
Hg()	0.0	0.0	77.4	$\mathrm{ZnS}(\mathrm{s})$	-202.9	-198.3	577
$\mathrm{HgO}_{(2)}$	-90.7	-56.5	72.0	$2 \mathrm{nSO},(\mathrm{s})$	-978.6	-871.6	124.7

انوڤی ييوند متوسط ((kJ/mol)

بوr	ا		ا
$\mathrm{Br}-\mathrm{Br}$	193	$1-\mathrm{I}$	151
$\mathrm{Br}-\mathrm{Cl}$	216	$\mathrm{N}-\mathrm{Br}$	243
$\mathrm{Br}-\mathrm{F}$	249	$\mathrm{N}-\mathrm{Cl}$	201
$\mathrm{Br}-\mathrm{I}$	175	$\mathrm{N}-\mathrm{F}$	283
$\mathrm{C}-\mathrm{Br}$	285	$\mathrm{N}-\mathrm{H}$	389
$\mathrm{C}-\mathrm{C}$	347	$\mathrm{N}-\mathrm{N}$	159
$\mathrm{c}=\mathrm{C}$	619	$\mathrm{N}=\mathrm{N}$	418
$\mathrm{C}=\mathrm{C}$	812	$\mathrm{N} \equiv \mathrm{N}$	941
C-Cl	326	$\mathrm{N}-\mathrm{O}$	201
$\mathrm{C}-\mathrm{F}$	485	$\mathrm{N}=\mathrm{O}$	607
$\mathrm{C}-\mathrm{H}$	414	$\mathrm{O}-\mathrm{Br}$	201
$\mathrm{C}-\mathrm{I}$	213	$\mathrm{O}-\mathrm{Cl}$	205
$\mathrm{C}-\mathrm{N}$	293	$\mathrm{O}-\mathrm{F}$	184
$\mathrm{C}=\mathrm{N}$	616	$\mathrm{O}-\mathrm{H}$	463
$\mathrm{C}=\mathrm{N}$	879	$0-1$	201
$\mathrm{C}-\mathrm{O}$	335	O-0	138
$\mathrm{c}=0$	707	$\mathrm{O}_{2}^{\text {* }}$ *	494
$\mathrm{C} \equiv \mathrm{O}$	1072	$\mathrm{P}-\mathrm{Cl}$	326
c-s	272	$\mathrm{P}-\mathrm{H}$	318
$\mathrm{c}=\mathrm{s}$	573	$\mathrm{S}-\mathrm{Br}$	217
$\mathrm{Cl}-\mathrm{Cl}$	243	$\mathrm{S}-\mathrm{Cl}$	276
$\mathrm{Cl}-\mathrm{F}$	249	S-F	285
$\mathrm{Cl}-\mathrm{l}$	208	$\mathrm{S}-\mathrm{H}$	339
F-F	155	S-S	213
$\mathrm{H}-\mathrm{Br}$	364	$\mathrm{Si}-\mathrm{Cl}$	301
$\mathrm{H}-\mathrm{Cl}$	431	$\mathrm{Si}-\mathrm{C}$	381
$\mathrm{H}-\mathrm{F}$	565	$\mathrm{Si}-\mathrm{F}$	565
$\mathrm{H}-\mathrm{H}$	435	$\mathrm{Si}-\mathrm{H}$	323
$\mathrm{H}-1$	297	$\mathrm{Si}-\mathrm{O}$	368
I-F	278	$\mathrm{Si}-\mathrm{Si}$	226

$$
\begin{aligned}
& \text { 1, N1r } \times 10^{r v} \mathrm{~m}^{r} \text { (الف) } \Delta 1-1 \\
& \text { 4, } 41 r \times 10^{*} \mathrm{~g} \text { (الف) } \Delta r_{\text {- }} 1 \\
& \text { - } ر \lambda \Delta s g / m L \text { (الف) } \Delta \Delta \text { _ } 1 \\
& .9, \circ \Delta r \mathrm{Mm} \text { (الف) } \Delta V \text { - } 1 \\
& .1,0 r \times 10^{r} \mathrm{~cm} \text { (الف) } \Delta 9 \text { _ } 1 \\
& \text { فُ }
\end{aligned}
$$

 نسبت ايز دوجرم|كـــيرّا
 (در) ($\mathrm{SO}_{\mathrm{r}} \mathrm{\mu}^{\mu}$)

 عارى

$$
\begin{aligned}
& .9,44 \times 10^{4} \mathrm{C} / \mathrm{g}(\tau)
\end{aligned}
$$

 (الف) 10 Y Y
 iV - Y

نشانه	2	A	\%	,	لكترون
Cs	D0	ITr	00	Vs	00
Bi	AT	P0. ${ }^{\text {r }}$	AT	179	$\underline{N H}$
Ba	Q 9	ris	Os	AY	OF
Sn	D.	1ro	So	V。	0.
Kr	r ${ }_{\text {P }}$	AF	Tc	+1/	rf
$\mathrm{Se}^{\text {r+ }}$	Y1	10	Y	rim	to
$\mathrm{O}^{\text {r- }}$	\wedge	19	\wedge	\wedge	1.

1 - 1 (الف) فانون بقاى جرم میى

 (${ }^{\prime \prime}=1$ $\mathrm{Ne}(\mathrm{g}) \div \mathrm{Na}(\mathrm{A}): \mathrm{Si}(د): \mathrm{Ag}(\mathrm{c}) \div \mathrm{Sb}(ب): \mathrm{Al}(\mathrm{c}) 0.1$

 $100^{-9} \times 9, \gamma$ (ح) $00,0 \gamma r \times 10^{-r}$ (ب) $11, r \wedge \times 10^{9}$ (الف) 11 - 1

$$
\cdot Y, y \mid r \times 10^{9}(\Delta)\left(r, 0 \times 10^{-11}(\Delta)\right.
$$

$.1 \times 10^{-19}(\mathrm{~A})$
$: 1,0 \mathrm{Mm}$ (ج) $1,0 \times 10^{r} \mathrm{~kg}(ب): r, 0 \mathrm{Cg}$ (e (أ) $10=1$
$.9 \times 10 \mathrm{~nm}(j) \div 9, r \times 10^{r} \mathrm{Gg}(\rho)!r, v \times 10^{r} \mu \mathrm{~g}(\infty) \leq 1, r \times 10^{r} \mathrm{pm}(\rho)$

$$
\left(10^{-r} \mathrm{~m}^{r} L\right) \circ, 001 \mathrm{~m}^{r}(ب)!\left(10^{r} L \text { L }\right) 100 \mathrm{~L}\left(1 \mathrm{C}_{\text {- }}\right) \mid
$$

$.1,091 \times 10^{7} \mathrm{~m}$ (الف) 19 ـ 1 .1, Y 1 km (الف) Y1_1 YT- 1

 .9449 (
 r, grin ${ }^{r}$ (ill) $\mathrm{Yv}-1$
KIK (ب) \% \% Vo (الف) rs - 1

برجاى مي ماند.

A $4 \mathrm{~km} / \mathrm{hr}$ (الف) Fl - 1

9, $54 \% \times 10^{7}$ mile/hr

\therefore jobV cm^{r} (1) (il) pq- 1

\& 4

F F

$$
A 1, Z=I r \text { YO_ } 9
$$

$$
\therefore j \cdot A=\gamma n m \quad r q=s
$$

$$
8, r \Lambda \times 10^{\frac{8}{m} / \mathrm{s}} \mathrm{rl}-9
$$

俍 $1 m_{l}=+1,+(1-1), \ldots, 0,(1-1),-11$

$9(j): r(g)$ *).. 9

$$
\begin{aligned}
& \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ar,vonm IV_- } \% \\
& \text {. } n=r \Delta n=0 ; 19 \text { - } 9
\end{aligned}
$$

$$
\begin{aligned}
& \text {.frs } 11-9 \\
& \text {. } 0 \text { GTVY ITr- } 9
\end{aligned}
$$

ry $\mathrm{rgFe}(\mathrm{s}) \mathrm{Fr}$. F $\%+Y, 0 \mathrm{NaCl} P \mathrm{P}_{-} \uparrow$
فصل Q
$r v, 0^{\circ} \mathrm{C} 1-0$
$-6 .{ }^{\circ} \mathrm{C}$ T- 0
$.1, \Gamma \mathrm{kJJ} /{ }^{\circ} \mathrm{C} \Delta-0$
$.1 \wedge \lambda \mathrm{kI} \mathrm{Y}=\Delta$

.1FFJ 11 - 0
. $\mathrm{K}, \mathrm{JVF}{ }^{\circ} \mathrm{C}$ Ir $=0$

- Ayrkj 10-0
r rokJ ${ }^{\circ} \mathrm{C}$ IV_o
. 19 ـ 0
$\mathrm{C}_{\varphi} \mathrm{H}_{\varphi}(\mathrm{l})+\frac{10}{r} \mathrm{O}_{\Gamma}(\mathrm{g}) \longrightarrow \mathrm{CO}_{\gamma}(\mathrm{g})+\Gamma \mathrm{H}_{\gamma} \mathrm{O}(\mathrm{l})$ Y) $-\Delta$
$\Delta H=-r Y \& \wedge k I$
19, frki Yr_s

$. \Delta H=+\Delta_{0}, 0 \mathrm{kJI} Y V_{-} \Delta$
$\Delta H=-\circ \circ \mathrm{H} \mid \mathrm{kl}$ YQ_ Δ
$\Delta H=-\mid r v a j o \mathrm{kIT}$ r| - Δ
$\Delta H=-1.0 \lambda 1,9 \mathrm{~kJ} \quad \mathrm{rr}-\Delta$
$. \Delta H=-V 1, k J T+\Delta-\Delta$
$r V-\Delta$

$\Delta H_{f}^{\circ}=-r 01, \mathrm{~kJ} / \mathrm{mol} \mu \mathrm{V}=0$
1-0 Dicce .
 + HYkJ/mol 01 - 0 $\Delta H=-|r| \mathrm{kJ} \quad \Delta r=0$ $\Delta H=-|r \cdot k\rangle \Delta Q=0$
$\Delta H^{\circ}=-1 \Delta q \mathrm{~kJ}(ب): \Delta H-1 \Delta 0 \mathrm{kl}$ (الـق) $\Delta V-\Delta$ $+11 \mathrm{rkJ} / \mathrm{mol} 09$ - 0

فضل
(9

$8,90 \times 10^{-7 \pi} \mathrm{~J}$
 r,VA $\times 10^{-19} \mathrm{~J} \cdot$ (oronm) 0, ro $\times 10^{-\mathrm{V}} \mathrm{m}(ب)$
 $\int \mathrm{Au}^{+} \cdot \mathrm{Ag}^{+}: d^{10}: \mathrm{Br}^{-} \cdot\left(\mathrm{BB}^{\top+} \cdot \mathrm{Al}^{r+}: s^{\top} p^{\xi}: \mathrm{Be}^{r+}: s^{r} \quad r \mid-\mathrm{V}\right.$ $. \mathrm{Bi}^{T+}, \mathrm{As}^{\gamma+}: d^{10} s^{r}$
$. \mathrm{Na}_{4} \mathrm{~N}, \mathrm{Al}_{Y} \mathrm{O}_{Y} \cdot \mathrm{MgO}, \mathrm{Na}_{Y} \mathrm{O}: \mathrm{AlCl}_{Y}, ~ \mathrm{MgCl}_{Y}, ~ \mathrm{NaCl} \mathrm{H}-\mathrm{V}$ AlN $: \mathrm{Mg}_{\varphi} \mathrm{N}_{\varphi}$
با

$. \mathrm{N}^{\top-}(\AA): \mathrm{Tl}^{+}(د): \mathrm{Tl}^{+}$(ج) $: \mathrm{Te}^{\gamma-}$ (ب):Cu (الف) $\mathrm{CV}-\mathrm{V}$

 $\mathrm{K}_{\mathrm{r}} \mathrm{AsO}_{+}(\stackrel{\Delta}{\mathrm{H}})!\mathrm{BaCO}_{\mathrm{r}}$
 . $\mathrm{AgNO}_{Y}(\mathrm{~A}): \mathrm{Li}_{Y} \mathrm{O}(د)$

ف
$\because \mathrm{N}_{Y}, \mathrm{O}_{Y}, \mathrm{Al}_{Y}, \mathrm{I}_{Y}, \mathrm{Br}_{Y}, \mathrm{Cl}_{Y}, \mathrm{~F}_{Y}, \mathrm{H}_{Y},-\mathrm{A}$
: به HCl شـده است
 $. \mathrm{BiCl}_{\mathrm{T}}(b): \mathrm{SeCl}_{\mu}(\tau)!\mathrm{MgS}(j) \div \mathrm{BeO}(g)$ H H - Br $1 / 11$ V - A . $\mathrm{Br}-\mathrm{Cl}$ - 1

سمت جبـ قرار دارد.

ـ ـ ـ
(0)S ، C C S S S

($(\mathrm{r}, \mathrm{e}) \mathrm{N}, \mathrm{Ca}:(\mathrm{r}, \mathrm{r}) \mathrm{Br}, \mathrm{Rb} \pm(\mathrm{T}, 1) \mathrm{Br}, \mathrm{Ba}$. - 10

 $\left(1, j^{*}\right) \mathrm{Cs}-\mathrm{H},(1, r) \mathrm{Ca}-\mathrm{H} \cdot(1,0) \mathrm{Cl}-\mathrm{H} .(0$, , $) \mathrm{C}-\mathrm{H}($ ()
 : $\mathrm{N}-\mathrm{F}(\mathrm{C}):(0 \quad<\quad \mathrm{C} \quad \mathrm{O}) \mathrm{P}-\mathrm{H}<(\mathrm{N} . . \mathrm{N}) \mathrm{N}-\mathrm{H}(ب)$ $.0, r) \mathrm{N}-\mathrm{Cl}<(\mathrm{N} \cdot \sigma, \lambda) \mathrm{N}-\mathrm{H}(\mathrm{\rho}):(\mathrm{N} \cdot 0, \lambda) \mathrm{N}-\mathrm{H}<(\mathrm{F} \cdot 1,0)$ $\mathrm{P}-\mathrm{O}(\mathrm{y}):(\mathrm{S}, \ldots, *) \mathrm{P}-\mathrm{S}=(\mathrm{N}, \ldots,+) \mathrm{N}-\mathrm{S}(\mathrm{A}):(\mathrm{Cl}$ ($0.0, \%$) $\mathrm{N}-\mathrm{O}<(0+1, r)$

19-1

$$
\begin{align*}
& \Delta d^{\prime \prime} \cdot \varphi s^{\prime} \varphi p^{T} \\
& r q^{Y}, 1 s^{\top} r s^{\top} r p^{\varphi} r s^{\varphi} r p^{\dagger} r d^{1} \varphi \psi s^{\top} \varphi p^{\varphi} r d^{\prime} \Delta s^{\top} \tag{ج}
\end{align*}
$$

$$
\begin{aligned}
& \text { of (J) (() () () }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (د) }
\end{aligned}
$$

بإرامتناطيسى
(د) () (
 $\mathrm{Cu}, \mathrm{Cr}, \mathrm{K}(\Delta): \mathrm{F}, \mathrm{B}(\mathrm{z}): \mathrm{Zn}, \mathrm{Ca}(\mathrm{r}): \mathrm{As}(\mathrm{e}) \mathrm{t}) \quad \Delta 0=9$

فضل
I = V

 الكترون دوم از الدربيتال ا I ـ V V

 . برابر CsCl 10 = 10
 C 19 - C
 الست هِون مقلار باز آلزاد شده از MgS بيشنر از آن كر جبك تر از robr
$\mathrm{Cu}^{+}{ }^{\prime} s^{\gamma}{ }^{\gamma} r^{\gamma} \gamma p^{\gamma}{ }^{\gamma} \mathrm{rs}^{\gamma} r p^{\gamma} \gamma d^{\dagger}$, (الف)
 (ب)
$\mathrm{Cl}^{-} \mid s^{r} Y s^{\top} r p^{\phi} r s^{r} r p^{9}$,
$C s^{+} \mid s^{r} r s^{\top} r p^{5} r s^{r} r p^{9} r d^{10} r p^{r} r p^{5}+d^{10} 0 s^{\top} O p^{9}$,

$\mathrm{Co}^{\gamma+} \mid s^{Y} \varphi s^{\gamma} \varphi p^{\gamma} \gamma s^{\top} \tau p^{\gamma} r d^{\gamma}$

 $. \mathrm{XeO}_{\mathrm{T}}(\mathrm{g}): \mathrm{SF}_{\mathrm{F}}(\stackrel{ }{(})$
(الض) PV .. A
 (و) كُزنون نتراتلر ئوريديد.
 (9
اتم P در بولكول

 AB A_{0} : - LS T T $A B_{T} E_{T}$,

 مسطع مربعى: $\mathrm{XeF}_{\uparrow}: \mathrm{AB}_{\gamma} \mathrm{E}_{\gamma}(\mathrm{A})$: . $s d^{\top} s p^{r}(\infty): s p(0): s p^{\top}(ج): d^{\top} s p^{r}$ (ب) $): d s p^{\top}$ (الف) 9 - 9 $. s p^{r}(\mathrm{~s}): s p^{r}(b): s p^{r}(ح): d s p^{r}(\mathrm{j}) \cdot d s p^{\mu}(\mathrm{g})$

$$
\cdot s p^{r}(s): d^{r} s p^{r}(b): d d^{\varphi} s p^{r}(\tau): d s p^{r}(j): s p p^{r}(\jmath)
$$

1r.. 9 (الف)
(e)
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}: ~ خ \mathrm{~h}$
$0 \% 0_{0}^{0.0} 0$
: ${ }^{\circ}$:
$\left.\mathrm{H}^{\prime}\right|_{\mathrm{H}} ^{\mathrm{P}_{0}^{\infty}} \mathrm{O}_{0}^{0} \cdot \theta$

10.9
(الف)

$$
\begin{equation*}
\ddot{\mathrm{S}}=\mathrm{C}=\ddot{\mathrm{S}} \quad \text { (A) } \quad \stackrel{\mathrm{H}}{\mathrm{H}} \underset{\substack{\mathrm{~S} \\ \mid \\ \mathrm{H} i}}{ } \tag{}
\end{equation*}
$$

ri.A
 $: \ddot{C} \mid-\ddot{s}-\ddot{s}-\ddot{C}:(د)$

TH_A

T0. A

مثبت

$$
\begin{aligned}
& \mathrm{H}-\stackrel{\ddot{\mathrm{N}}}{-\mathrm{S}}-\ddot{\mathrm{O}} \longleftrightarrow \mathrm{H}-\mathrm{N}=\stackrel{[}{\mathrm{S}}-\ddot{\mathrm{O}}:{ }_{-}^{\bullet} \mathrm{r} \Delta-\lambda \\
& : \ddot{F}-N=\stackrel{\oplus}{N}=\stackrel{\ominus}{N}: \longleftrightarrow: \ddot{\mathrm{F}}-\stackrel{\oplus}{\mathrm{N}}-\stackrel{\oplus}{\mathrm{N}} \equiv \mathrm{~N}:
\end{aligned}
$$

Fr_A

(ب)

 تجربي مطابقت دارد.

 Cl| O

$$
\begin{equation*}
d^{r} s p^{\top}, 90^{\circ}(\Delta) \leq d s p^{\top}, \| \gamma_{0}^{\circ}, 90^{\circ}(\nu) \tag{الف}
\end{equation*}
$$

$\begin{array}{lllll}\sigma^{4 l} l s & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ 0,0 & \frac{1}{1} \\ 0,0\end{array}$
درجه
Tr-9
(الف)

$$
\begin{aligned}
& \text { :O: } \\
& \text { (ب) }
\end{aligned}
$$

$$
\begin{align*}
& \text { :F. } \tag{ج}
\end{align*}
$$

$$
\begin{align*}
& \text { 1V-9 } \tag{ヵ}\\
& \ddot{\mathrm{O}}=\stackrel{\oplus}{\mathrm{N}}=\ddot{\mathrm{O}} \text {, }
\end{align*}
$$

$$
\begin{aligned}
& \text { 19-9 }
\end{aligned}
$$

$$
\begin{align*}
& \xrightarrow[\mathrm{H}]{\mathrm{H}} \mathrm{C}=\stackrel{\mathrm{N}}{\mathrm{~N}} \text { : } \tag{}
\end{align*}
$$

$\mathrm{HCl}(\mathrm{g}) r, f \circ \circ \mathrm{~L}, \mathrm{~N}_{r}(\mathrm{~g}) \circ, f \circ \mathrm{~L}, \mathrm{NH}_{r}(\mathrm{~g}) \circ, \rho \circ \mathrm{L} \mathrm{r}^{\prime}-10$
rr－1。

$$
\psi \mathrm{NH}_{r}(\mathrm{~g})+r \mathrm{~F}_{\gamma}(\mathrm{g})-\mathrm{NF}_{r}(\mathrm{~g})+r \mathrm{NH}_{\psi} \mathrm{F}(\mathrm{~s})(\mathrm{d})
$$ $\left.\mathrm{F}_{\mathrm{r}}(\mathrm{g}) \mathrm{r}\right) \cdot, \mathrm{V} \mathrm{mL}, \mathrm{NH}_{\mathrm{r}}(\mathrm{g}) r \cdot \gamma, g \mathrm{~mL}(\mathrm{C})$

 ． 1 rAjog／mol rV＿1。
 SO_{r} ज．

${ }^{\gamma} \mathrm{C}_{0} \mathrm{H}_{1}{ }_{(\mathrm{g}}(\mathrm{g})+10 \mathrm{O}_{Y}(\mathrm{~g}) \longrightarrow 1 \cdot \mathrm{CO}_{Y}(\mathrm{~g})+10 \mathrm{H}_{Y} \mathrm{O}(\mathrm{l})$
$\% .99, \triangle \mathrm{Al} \mathrm{Fa}-10^{\circ}$ $p_{N_{Y}}=0, \mu Y_{0} \operatorname{atm} \angle p_{O_{Y}}=0, j \lambda_{0}$ atm DI－ 10
 $\mathrm{C}_{\mathrm{r}} \mathrm{H}_{9} 1,90 \mathrm{~g}, \mathrm{CH}_{4} 1, \Gamma \mathrm{Hg}(\mathrm{Z})$.099 mL 00.10
－رirratm $\Delta V=10^{*}$
 ．9Y1K 91 －1。
10 ـ 1 ـ

 －0，90．0g 84．1。
． $\mathrm{He}(\Delta)!\mathrm{Cl}_{Y}(\Delta)!\mathrm{He}(\underset{)}{(\mathrm{a}})!\mathrm{He}(ب) \div \mathrm{Cl}_{Y}(\mathrm{H}) \mathrm{C}=10$ 0．

 （الف）VQ＿ 10

 درنتيجه رفتار كاز إيدهألتر است．
 كاز

לal

درجه بيوند

 ردرجئهيوند $O_{Y}{ }^{\text {O }}$

فا

 ．0， 47 mL （الفـ） 9 － 1 ．

P	V	n	T	11．10
r ，ooatm	rre．L	1， $0 \cdot \mathrm{~mol}$	$10 .{ }^{\circ} \mathrm{C}$	
－， 900 atm	$1,0 . \mathrm{L}$	－gevrimol	1.00 K	
¢ fobatm	Q0， 0 mL	－ $0 \cdot 1.0 \mathrm{~mol}$	$-10,{ }^{\circ} \mathrm{C}$	
Q $0,5 \mathrm{fatm}$	1，YOL	r，ge．mol	vo，${ }^{\circ} \mathrm{C}$	
			$\begin{aligned} & .1 \gamma \wedge \mathrm{~mL} \\ & . \pi 9^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 18-10 \\ & 10-10 \end{aligned}$
			－0，YOLL	1v－1。
			－0，rorg	19－1．
			－9A1g／L	ri－1。
			－）Ofl ation	$\mathrm{rr} \mathrm{ra}^{\text {P }}$
		．（Ne P ，${ }^{\text {j }}$	Yo， $\mathrm{rg} / \mathrm{mol}$	ro．10

مر， $\mathrm{NH}_{Y}(\mathrm{~g}) 10, \cdot \mathrm{~L}, \mathrm{O}_{Y}(\mathrm{~g}) \mathrm{Y} Y, \Delta \mathrm{~L}, \mathrm{CH}_{Y}(\mathrm{~g}) 10,0 \mathrm{~L} \quad Y \mathrm{~V}=10$

ra＿lo
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad$（الفـ）
$.1 r, \lambda \mathrm{~L} \mathrm{NO}(\mathrm{g})(ب)$

 الست： $.0 .09 \mathrm{~kJ} / \mathrm{mol} \mathrm{Yl}^{-11}$ $90^{\circ} \mathrm{C}$（TRAK）YR． 11 －0．JTYatm KO＿ 11 N ${ }^{\circ} \mathrm{C}$（TOFK）YY＿ 11
ا 11
而
 （ح $00{ }^{\circ} \mathrm{C}$仿

 ＊jo•｜V0 $0^{\circ} \mathrm{C}$ ر جامد ذوب سیتشوه؛ در
 － 11

 بالاتربن دما براى سطلح متراكم كتنده است

 $. r, 99 \mathrm{~g}_{\mathrm{cm}}{ }^{r}$ F1－ 11

 009 pm PV＿ 11
 ．1Frpm 01－11 ． V رrg g／cm ${ }^{r}$ or－11＂ ． 1 V ）pm 00 ＿ 11 ．1ropm $\Delta V_{-} 11$ ． 194 pm D9＿ 11 FQ J． 0° ，YY，r° \＆ 1 － 11

 ．9，9Ag／cm ${ }^{\mu}$（ب）：r0Apm（الف）99＿II

 A， $\mathrm{rrg} \mathrm{g}^{\prime} \mathrm{cm}^{r}(\mathrm{a})$
 11 بيوند C＝ 0 حذ به
 خخطى دو بيوند C＝سبب مى C Pم PF 11 （حذ P－F
زرج الكترون غيريبرندى بر روي اتم P در رأس هرم قرار دارد.

 بزرگتر قرىتر استـ．
 ．F．．．H－F F^{-}：متصل H H－F （ $\mathrm{HSO}_{\mathrm{p}}^{-}$）نسبـت به آنيرن نمك نـرمال

 صورت

 الكتروندهـنده عمـل كنتد． ال11 10 ـ 10
 －NH H_{Y}俍 تركيب توىتر است． （الف）IV＿II

 （ج）（ج

$$
\begin{aligned}
& i=r, 0 y \vee 1-1 r \\
& -r, \sigma_{0}{ }^{\circ} \mathrm{C} V \mathrm{~V}^{2}-1 r \\
& ., r+r^{\circ} \mathrm{C} V 0=1 r
\end{aligned}
$$

1-ir
$\mathrm{Fe}(\mathrm{OH})_{r}(\mathrm{~s})+\mathrm{H}_{\Gamma} \mathrm{PO}_{4} \longrightarrow \mathrm{FePO}_{4}(\mathrm{~s})+\mathrm{H}_{Y} \mathrm{O}$
$\mathrm{Hg}_{Y} \mathrm{CO}_{\mu}(\mathrm{s})+\mathrm{YH}^{+}+Y \mathrm{Cl}^{-} \longrightarrow \mathrm{Hg}_{Y} \mathrm{Cl}_{\Gamma}(\mathrm{s})+$

$$
\mathrm{H}_{\mathrm{r}} \mathrm{O}+\mathrm{CO}_{Y}(\mathrm{~g})
$$

$$
\mathrm{Na}^{+}+\mathrm{PO}_{4}^{r-}+\mathrm{Ba}^{r+}+\mathrm{YCl}^{-} \longrightarrow \text { (? }
$$

$$
\begin{equation*}
\mathrm{Ba}^{r+}+\mathrm{S}^{r-}+\mathrm{Zn}^{r+}+\mathrm{SO}_{4}^{r-} \longrightarrow \mathrm{BaSO}_{\psi}(\mathrm{s})+\mathrm{ZnS}(\mathrm{~s}) \tag{د}
\end{equation*}
$$

$\mathrm{Pb}^{\dagger+}+\mathrm{YNO}_{r}^{-}+\mathrm{HS} \longrightarrow \mathrm{PbS}(\mathrm{s})+\mathrm{rH}^{+}+\mathrm{NO}^{-}$
(A)
$\mathrm{Pb}^{r+}+\mathrm{H}_{\uparrow} \mathrm{S} \longrightarrow \mathrm{PbS}(\mathrm{s})+\mathrm{YH}^{+}$
, r_ir
$r \mathrm{Na}^{+}+\mathrm{PO}_{r}^{r-}+\mathrm{rH}^{+}+r \mathrm{Br}^{-} \longrightarrow \mathrm{H}_{r} \mathrm{PO}_{r}+$ (الف)
$r \mathrm{Na}^{+}+\mathrm{r}^{-} \mathrm{Br}^{-}$
$r \mathrm{H}^{+}+\mathrm{PO}_{4}^{r} \longrightarrow \mathrm{H}_{4} \mathrm{PO}_{4} \quad$ اكنتّ
$\mathrm{Mg}^{\dagger+}+\mathrm{YNO}^{-}+\mathrm{Ba}^{\dagger+}+\mathrm{YOH} \longrightarrow$
(ب)
$\mathrm{Mg}(\mathrm{OH})_{Y}(\mathrm{~s})+\mathrm{Ba}^{\Upsilon+}+\mathrm{YNO}^{-}$

$\mathrm{ZnS}(\mathrm{s})+\mathrm{YH}^{+}+\mathrm{YCl}^{-} \longrightarrow \mathrm{Zn}^{\Upsilon+}+\mathrm{YCl}^{-}+\mathrm{H}_{Y} \mathrm{~S}(\mathrm{~g})$
$\mathrm{ZnS}(\mathrm{s})+\mathrm{Y} \mathrm{H}^{+} \longrightarrow \mathrm{Zn}^{\varphi+}+\mathrm{H}_{Y} \mathrm{~S}(\mathrm{~g})$

$$
0=1 r
$$

$\mathrm{Pb}^{\gamma+}+\mathrm{YNQ}_{-}^{-}+\mathrm{Mg}^{Y+}+\mathrm{SO}_{+}^{r-} \longrightarrow$
(الف)
$\mathrm{PbSO}_{\psi}(\mathrm{s})+\mathrm{Mg}^{+}+\mathrm{NO}_{r}^{-}$
$\mathrm{Pb}^{\dagger}+\mathrm{SO}_{4}^{\dagger-} \longrightarrow \mathrm{PbSO}_{4}(\mathrm{~s}) \quad \quad$,
$\mathrm{Fe}_{r}\left(\mathrm{CO}_{r}\right)_{r}(\mathrm{~s})+\varphi \mathrm{H}^{+}+\varphi \mathrm{NO}_{r}^{-} \longrightarrow r \mathrm{Fe}^{r+}+9 \mathrm{NO}_{r}^{-}+(ب)$
$r \mathrm{CO}_{r}(\mathrm{~g})+\mathrm{H}_{r} \mathrm{O}$

$\mathrm{Cd}^{\mathrm{r}}+\mathrm{rClO}_{r}^{-}+\mathrm{YK}^{+}+\mathrm{S}^{\mathrm{r}} \longrightarrow$
(ج)
$\mathrm{CdS}(\mathrm{s})+\mathrm{rK}^{+}+\mathrm{rClO}_{-}^{-}$

$r \mathrm{NH}_{+}^{+}+\mathrm{SO}_{+}^{r-}+\mathrm{Ca}^{r+}+\mathrm{YOH}^{-} \longrightarrow$
(Δ
$\mathrm{CaSO}_{r}(\mathrm{~s})+r \mathrm{NH}_{r}(\mathrm{~g})+\mathrm{rH}_{r} \mathrm{O}$

$r+(j): \psi+(g)$
 $.4+(j): 1+(g)$
$\because 9+(0): 0+(د): 9+(7): 0+(ب): 1+(1) 11-1 r$
$r+(g)$
 $: \mathrm{Cl}_{r}(\mathrm{C}):$: C :

(الف)
$r \mathrm{H}_{\gamma} \mathrm{O}+\psi \mathrm{MnO}_{\psi}^{-}+\mathrm{HClO}_{\varphi}^{-} \longrightarrow \stackrel{\mathrm{MnO}_{\varphi}+}{+}$
(a) لو

با بايد با المزودن اترزثى بر
 ,

. Be^{r+}
(a) $: \mathrm{F}^{-}$(د) $: \mathrm{Ca}^{{ }^{l+}}$
(.) $: \mathrm{Fe}^{r+}$
(ب) Li^{+}(الف) $V_{\text {_ }}$ I

 .-ar kJ/mol II - Ir
Ir ـ Ir

 . مولكولدهائى آب.
. $\mathrm{N}_{\mathrm{r}} \mathrm{O}$ i, org an $\mathrm{N}_{\mathrm{r}} \mathrm{O}$, ortimol 18.1 Y
. $0, r_{0}$ IV_Ir

. $\mathrm{AgNO}_{r} \mathrm{roj} \mathrm{\Delta g} \mathrm{Y}$ - $-1 r$

 .0,f氏YM NaOH YV_ IY
$\% 90$ o HCHO_{r} Y $\mathrm{Ha}_{\text {- }}$ IY

$. r, .9 M, H_{r} \mathrm{PO}_{*} \mathrm{rr}$ - Ir
ro_ 1r*
$Y \mathrm{Na}(\mathrm{s})+Y \mathrm{H}_{Y} \mathrm{O}-Y \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{Y}(\mathrm{~g})$ (الف)
0 - 0 TOVM NaOH (ب)
$.0,0$ NFY TV_ Ir
.0, FINm, $\mathrm{C}_{14} \mathrm{H}_{r r} \mathrm{O}_{11} \mathrm{ra}$ - Ir
.0, 740 atm FI - Ir
.0.j09 Fr_ Ir
.o,fil fo. Ir
(الف) FV_ IY
 . Irag mol Fa _ Ir . $\mathrm{C}_{\gamma} \mathrm{H}_{+}(\mathrm{OH})_{\gamma} 000 \mathrm{~g} \mathrm{Ol}-1 \%$ - $-11, \lambda^{\circ} \mathrm{C} / m$ or _ Ir . $-1,000^{\circ} \mathrm{C} \Delta 0$ - Ir . $10 \mathrm{~g} \mathrm{~g} / \mathrm{mol} \Delta V$ _ IY . IOT $\mathrm{H} \Delta^{\circ} \mathrm{C} \Delta Q_{\text {- I }}$ Ir . $9 Y$, $\mathrm{g} / \mathrm{mol}$ G1 - IY $.1\lrcorner \cdot 9 \mathrm{~g} / \mathrm{mol} 9 \mathrm{FH}^{\mathrm{H}}-1 \mathrm{Y}$ $.9 \mathrm{jVO} \times 10^{\circ} \mathrm{gimol} 90-1 Y$. OrVg/mol $9 V _$Ir

$$
\Gamma \mathrm{KOH}+\mathrm{H}_{\Gamma} \mathrm{PO}_{\psi} \longrightarrow \mathrm{K}_{\psi} \mathrm{PO}_{\psi}+r \mathrm{H}_{\psi} \mathrm{O}
$$

$\mathrm{C}_{4} \mathrm{O}+\mathrm{H}_{4} \mathrm{O} \longrightarrow \mathrm{HOCl}^{\mathrm{O}}$
$\mathrm{N}_{\mathrm{r}} \mathrm{O}_{2}+\mathrm{H}_{\mathrm{r}} \mathrm{O} \longrightarrow \mathrm{Y} \mathrm{HNO}_{r}$
$\mathrm{CO}_{\mathrm{T}}+\mathrm{H}_{\mathrm{T}} \mathrm{O} \longrightarrow \mathrm{H}_{\mathrm{r}} \mathrm{CO}_{T}$
$\mathrm{CaO}+\mathrm{H}_{\mathrm{r}} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{r}$

．Al $\mathrm{O}_{\mathrm{r}}(\mathrm{A})$

 $\cdot \mathrm{Ni}\left(\mathrm{NO}_{\mu}\right)_{\mu}(\mathrm{g}): \stackrel{\mathrm{Fe}\left(\mathrm{NO}_{\mu}\right)_{\mu}(\rho): \mathrm{PbSO}_{\mu}(\rho)}{(\rho)}$ ．．رrana 41 ＿ir $\therefore \% \mathrm{~F}, \mathrm{~T} 4 \mathrm{Mg}(\mathrm{OH})_{\mathrm{P}} \mathrm{Fr}-\mathrm{Ir}$ $\therefore .99,9 \mathrm{KHC}_{A} \mathrm{H}_{4} \mathrm{O}_{4} 4 \mathrm{O}_{-} \mathrm{Ir}^{\mathrm{I}}$

 （ب）

 ．$\Delta \mathrm{O}, \mathrm{mL} \Delta \Delta \mathrm{m}^{-1 r}$ $-0,7 \circ 9 N \Delta V-1 世$

－$\cdot \circ \cdot 10 \cdot \mathrm{M}_{\mathrm{L}} \mathrm{KMnO}_{\mathrm{F}}(\mathrm{z})$
له
 ．0．0．18 L（mols）
r＿If

！
 （د） （ V 14
 تنييرى باتى بمانتد． ． ．
 rofs 10 － 14 ．0， $\mathrm{H} \cdot \times 10^{-7} / \mathrm{s}$ IV＿14
 نسـت بـ

$$
\mathrm{HI}+\mathrm{ICl} \longrightarrow \mathrm{HCl}+\mathrm{I}_{Y}: Y{ }^{2}
$$

 $k_{4}\left[\mathrm{NO}^{2}\right]\left[\mathrm{O}_{T}\right]=k_{T}\left[\mathrm{NO}_{T}\right]+k_{T}\left[\mathrm{NO}_{Y}\right][\mathrm{NO}]$

```
    \(\lambda \mathrm{H}^{+}+\mathrm{Cr}_{Y} \mathrm{O}_{\nu}^{r-}+\mu_{\gamma} \mathrm{H}_{\gamma} \mathrm{S} \longrightarrow \gamma \mathrm{Cr}^{\mu+}+r \mathrm{~S}+\gamma \mathrm{H}_{\gamma} \mathrm{O} \quad(\varphi)\)
```



```
    \(r \mathrm{Cu}+\mathrm{AH}^{+}+\mathrm{rNO}_{\uparrow}^{-} \longrightarrow \mathrm{rCu}^{\gamma+}+\mathrm{rNO}+r \mathrm{H}_{\varphi} \mathrm{O} \quad(\nu)\)
    \(\mathrm{PbO}_{\gamma}+\mathrm{H} \mathrm{HI} \longrightarrow \mathrm{PbI}_{\mathrm{r}}+\mathrm{I}_{\mathrm{r}}+\mathrm{Y}_{\mathrm{H}} \mathrm{O}\)
iv＿ir
\[
\begin{equation*}
\varepsilon \mathrm{H}+\mathrm{ClO}_{\psi}^{-}+\varepsilon \Gamma^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{r}_{\gamma}+\mu \mathrm{H}_{\gamma} \mathrm{O} \tag{}
\end{equation*}
\]
\[
\begin{equation*}
\text { 1. } \mathrm{H}^{+}+4 \mathrm{Zn}+\mathrm{NO}_{-}^{-} \longrightarrow \psi \mathrm{Zn}^{+\dagger}+\mathrm{NH}_{\psi}^{+}+r \mathrm{H}_{\varphi} \mathrm{O} \tag{د}
\end{equation*}
\]
\[
\begin{equation*}
r \mathrm{H}_{\mathrm{r}} \mathrm{AsO}_{\mu}+\mathrm{BrO}_{\mathrm{r}}^{-} \longrightarrow \mathrm{H}_{\mathrm{r}} \mathrm{AsO}_{\psi}+\mathrm{Br}^{-} \tag{e}
\end{equation*}
\]
\(r \mathrm{H}_{\gamma} \mathrm{SeO}_{\varphi}+\mathrm{H}_{r} \mathrm{~S} \longrightarrow Y \mathrm{Se}+\mathrm{HSO}_{\psi}^{-}+\mathrm{H}^{+}+r \mathrm{H}_{\varphi} \mathrm{O}\)
```

$\psi \mathrm{H}_{\mathrm{r}} \mathrm{O}+Y \mathrm{ReO}_{r}+\mu \mathrm{Cl}_{\mathrm{r}} \longrightarrow r \mathrm{HReO}_{+}+\varphi \mathrm{Cl}^{-}+\varphi \mathrm{H}^{+} \quad(\Delta)$
19 － 15
$9 \mathrm{H}_{\mathrm{r}} \mathrm{O}+\mathrm{AsH}_{\mathrm{r}}+\mathrm{Y} \% \mathrm{Ag}^{+} \longrightarrow \quad$（الف）
$\mathrm{As}_{\uparrow} \mathrm{O}_{9}+\mathrm{YFAg}+\mathrm{YYH}^{+}$
$1 \% \mathrm{H}^{+}+\gamma \mathrm{Mn}^{\dagger+}+\Delta \mathrm{BiO}_{r}^{-} \longrightarrow$
$Y \mathrm{MnO}_{\mathrm{p}}^{-}+\Delta \mathrm{Bi}^{\mathrm{r}+}+\mathrm{VH}_{\mathrm{Y}} \mathrm{O}$
$\% \mathrm{H}^{+}+\gamma \mathrm{NO}+\gamma \mathrm{NO}_{\gamma}^{-} \longrightarrow \mathrm{NN}_{\gamma} \mathrm{O}_{\psi}+Y \mathrm{H}_{\gamma} \mathrm{O}$
$11 \mathrm{H}^{+}+Y \mathrm{MnO}_{\gamma}^{-}+O \mathrm{HCN}+\Delta \mathrm{I}^{-} \longrightarrow Y \mathrm{Mn}^{\gamma+}+\quad$（ $)$
$\Delta I C N+\mathrm{AH}_{\gamma} \mathrm{O}$
$1 \mathrm{rH}^{+}+\mathrm{r} \mathrm{Zn}+\mathrm{Y}_{\mathrm{H}} \mathrm{MoO}_{4} \longrightarrow$
$r \mathrm{Zn}^{\gamma+}+\mathrm{rMo}^{\mu+}+\mathrm{AH}_{\mathrm{p}} \mathrm{O}$
「ご「
$4 \mathrm{OH}^{-}+\Delta \mathrm{HClO}_{r} \longrightarrow+\mathrm{ClO}_{+}+\mathrm{Cl}^{-}+\mathrm{rOH}^{-}+\mathrm{HH}^{2} \mathrm{O}$（ $)$
$\mathrm{AOH}^{-}+\mathrm{AMnO}_{+}^{-}+\mathrm{I}^{-} \longrightarrow \mathrm{AMnO}_{+}^{-}+\mathrm{IO}_{4}^{-}+{ }^{+} \mathrm{H}_{+} \mathrm{O} \quad(ب)$
$4 \mathrm{OH}^{-}+\mathrm{Y}_{\mathrm{H}_{r} \mathrm{O}}+\mathrm{P}_{\gamma} \longrightarrow Y \mathrm{HPO}_{\gamma}^{+}+\mathrm{YPH}_{r}$（ج）
$\mathrm{OH}^{-}+\mathrm{StH}_{r}+\mathrm{H}_{r} \mathrm{O} \longrightarrow \mathrm{Sb}(\mathrm{OH})_{r}^{-}+\mathrm{H}_{r}$（）

```

```

M゙－Ir

```

```

$\mathrm{H}_{\gamma} \mathrm{O}+\mathrm{r} \mathrm{CN}^{-}+\mathrm{rMnO}_{\uparrow}^{-} \longrightarrow \mathrm{rCNO}^{-}+\quad$（ب）
$r \mathrm{MnO}_{\gamma}+\mathrm{YOH}^{-}$
$Y \mathrm{H}_{Y} \mathrm{O}+\varphi \mathrm{Au}+\mathrm{ACN}^{-}+\mathrm{O}_{Y} \longrightarrow \varphi \mathrm{Au}(\mathrm{CN})_{Y}^{-}+\psi \mathrm{OH}^{-} \quad$（e）
$\mathrm{H}_{+} \mathrm{O}+\mathrm{Si}+\mathrm{YOH}^{-} \longrightarrow \mathrm{SiO}_{r}^{+-}+\mathrm{YH}_{Y}$
$\% \mathrm{OH}^{-}+\mathrm{rCr}(\mathrm{OH})_{r}+\mathrm{HrO}^{-} \longrightarrow$
$r \mathrm{CrO}_{+}^{r-}+\mathrm{rar}^{-}+\Delta \mathrm{H}_{\uparrow} \mathrm{O}$
ro．It
$9 \mathrm{H}_{\mathrm{H}^{2}} \mathrm{O}+\mathrm{P}_{4}+1 . \mathrm{HOCl} \longrightarrow$
（الف）
$\stackrel{H}{+} \mathrm{PO}_{4}+1 \cdot \mathrm{a}^{-}+1 \cdot \mathrm{H}^{+}$
$9 \mathrm{H}^{+}+\mathrm{XeO}_{r}+4 \mathrm{I}^{-} \longrightarrow \mathrm{Xe}+\mathrm{ri} \mathrm{I}_{\mathrm{r}}^{-}+\mathrm{H}_{\mathrm{r}} \mathrm{O}$
（ب）
$\mathrm{AH}^{+}+\mathrm{HO}^{r+}+\mathrm{C}_{\Gamma_{Y}} \mathrm{O}_{-}^{r-} \longrightarrow$
（ $(\underset{)}{ }$
$r \mathrm{UO}_{\gamma}^{r+}+\mathrm{rCr}^{r+}+\mathrm{H}_{r} \mathrm{H}_{\gamma} \mathrm{O}$
$r \mathrm{H}_{r} \mathrm{C}_{Y} \mathrm{O}_{\mathrm{Y}}+\mathrm{BrO}_{r} \longrightarrow \gamma \mathrm{CO}_{\gamma}+\mathrm{Br}^{-}+\mathrm{rH}_{\gamma} \mathrm{O}$
$\psi \mathrm{H}^{+}+r \mathrm{Te}+\psi \mathrm{NO}_{\varphi}^{-} \longrightarrow r \mathrm{TeO}_{\gamma}+\gamma \mathrm{NO}+\gamma \mathrm{H}_{+} \mathrm{O}$
竍

```

``` ra Ir
\(\mathrm{KOH}+\mathrm{HNO}_{\mu} \longrightarrow \mathrm{KNO}_{\mu}+\mathrm{H}_{\Gamma} \mathrm{O}\)
（النا）
\(\mathrm{Ca}(\mathrm{OH})_{r}+\mathrm{YHNO}_{r} \longrightarrow \mathrm{Ca}\left(\mathrm{NO}_{r}\right)_{Y}+\mathrm{YH}_{Y} \mathrm{O} \quad\)（ب）
\(\mathrm{A}(\mathrm{OH})_{r}+\mathrm{rHNO} \mathrm{H}_{r} \longrightarrow \mathrm{Al}\left(\mathrm{NO}_{r}\right)_{r}+\mathrm{H}_{r} \mathrm{O} \quad\)（ج）
\[
\mathrm{KOH}+\mathrm{H}_{\psi} \mathrm{PO}_{\psi} \longrightarrow \mathrm{KH}_{\gamma} \mathrm{PO}_{\gamma}+\mathrm{H}_{\Gamma} \mathrm{O}
\]
（الغ）
r \(\mathrm{KOH}+\mathrm{H}_{\mathrm{r}} \mathrm{PO}_{\psi} \longrightarrow \mathrm{K}_{\mathrm{r}} \mathrm{HPO}_{+}+\mathrm{Y}_{\mathrm{r}} \mathrm{O}\)
（ب）
```

$\frac{\left(P \mathrm{CS}_{\gamma}\right)\left(P \mathrm{H}_{\gamma}\right)}{\left(P \mathrm{H}_{\gamma} \mathrm{S}\right)^{\top}\left(P \mathrm{PC}_{\uparrow}\right)}=K_{p,} K_{p}=K_{c}(R T)^{+\gamma}$
(الف)
$\frac{\left(P \mathrm{~N}_{\varphi} \mathrm{O}_{\varphi}\right)}{\left(P \mathrm{~N}_{\varphi} \mathrm{O}\right)^{\dagger}}=K_{P} K_{P}=K_{c}(R T)^{-1}$ (ب)
$P O_{p}=K_{p, r} K_{p}=K_{c}(R T)^{+1}$
$\frac{(P C O)^{r}}{(P C O)^{r}}=K_{p \cdot} K_{p}=K_{c}(R T)^{-1}$
$\frac{\left(P_{\mathrm{N}}\right)\left(P_{O_{Y}}\right)}{(P O)^{r}}=K_{p,} K_{p}=K_{e}(R T)^{-1}$
3

(a) - 10 - 10 (الف) واست؛ (ب) بلون تغيير: (ج) بدون نغيير: (د) راست:
(A) راست (A)
. $14-10$
. 10 ـ 10
.f) 12.10




$$
\cdot \circ, \wedge \circ \uparrow \mathrm{g} \mathrm{Fe}(ب)
$$



$$
.0 .94 r \operatorname{atm}^{4} r 1-10
$$

$$
\text { [ }[\mathrm{CO}]=\left[\mathrm{H}_{\mathrm{r}} \mathrm{O}\right]=., \mathrm{rromol} / \mathrm{L} \text { (الف) } \mathrm{Cr}-10
$$

$$
k_{p}=k_{c}=r, 94(\tau): \mathrm{k}_{c}=r, 4 \psi(ب):\left[C C_{Y}\right]=\left[\mathrm{H}_{Y}\right]=0,0.990 \mathrm{mol/L}
$$

$. K_{r}=1, \mathrm{~V}$ 人atm ( $ب$ )
. $14 \mathrm{j} \% / \mathrm{atm} \mathrm{HV}=10$

$$
K_{c}=1,1 Y \times 10^{-r} \text { mol/L } \cdot K_{p}=0,059 r \operatorname{atm} r^{M}-10
$$

$$
K_{e}=1, \mathrm{VAL} / \mathrm{Lol}^{\top} \cdot K_{p}=\Lambda_{\mathrm{j}} \mathrm{VY} \times 10^{-\dagger} / \mathrm{atm}^{\top}
$$

$$
\therefore \text {,oprtatm F0 }=10
$$

$$
\begin{aligned}
& ب, 99 \times 10^{-r} \mathrm{molh}(ب):\left[O_{\mathrm{r}} \mathrm{I}=0,011 \cdot \mathrm{mol/L}\right. \\
& \text {-jooramoll Y1. } 10 \\
& \cdot\left[\mathrm{H}_{\mathrm{r}} \mathrm{O}\right]=[\mathrm{CO}]=0, \mathrm{r} 10 \mathrm{molh} \quad \mathrm{Yr}-10 \\
& {\left[\mathrm{H}_{\Psi}\right]=\left[\mathrm{CO}_{\Gamma}\right]=\cdot, \Gamma \mathrm{T}_{\mathrm{o}} \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

 كوبیك است.

$$
\text { ene }=k_{\mu}\left[\mathrm{NO}_{r}\right][\mathrm{NO}]
$$

با قراردادن عبارت مربوط به غانظت

$$
ت_{\sigma^{2}}=\left(k_{1}, k_{Y} / k_{Y}\right)\left[\mathrm{NO}^{\gamma}\right]^{\gamma}\left[\mathrm{O}_{Y}\right]
$$








 ترار ميكيرند.

. $99 \mathrm{ykJ} / \mathrm{mol}$ M-14
.f $\mathrm{V} \times 1 \mathrm{or}^{-r} \mathrm{~L}(\mathrm{~mol} . \mathrm{s}) \mathrm{rr}$ _ $\mathrm{If}^{*}$
$.99 \mathrm{VK}\left(4 \mathrm{Pq} 0^{\circ} \mathrm{C}\right) \mathrm{ra}$ _ 14
or, $\mathrm{KkJ} / \mathrm{mol}$ rv_ 1 P

فصل اه ا تعامل شيميايـى
$1-10$
$\frac{\left[\mathrm{N}_{r} \mathrm{O}_{\mathrm{r}}\right]}{[\mathrm{NO}]^{Y}}=K_{\mathrm{c}}(ب) \quad \frac{\left[\mathrm{CS}_{\gamma}\right]\left[\mathrm{H}_{Y}\right]^{*}}{\left[\mathrm{H}_{+} \mathrm{S}\right]^{\top}\left[\mathrm{CH}_{\gamma}\right]}=K_{\mathrm{c}}$

$$
\frac{\left[\mathrm{N}_{\gamma}\right]\left[\mathrm{O}_{\gamma}\right]}{\left[\mathrm{NO}^{\gamma}\right]^{r}}=K_{s}(\Omega) \quad \frac{[\mathrm{CO}]^{\gamma}}{\left[\mathrm{CO}_{\gamma}\right]}=K_{r}(\partial) \quad\left[\mathrm{O}_{\gamma}\right]=K_{c}(())
$$

$$
\begin{aligned}
& {\left[\mathrm{NO}_{\mathrm{r}}\right]=\left(k_{1} / k_{\mathrm{r}}\right)[\mathrm{NO}]\left[\mathrm{O}_{\mathrm{Y}}\right]}
\end{aligned}
$$



Sublimation تصeres	Reaction quotient, Q		Normality	نرمالبته
Subshell	Radioactivity	هر ترزايهى،	Nucleon	هسنك، نوكلئون
Subsidiary quantum number عدد كوانتومى فزع	Raoult's law	هانون رائول	Nucleus	A
Substance	Ratc - determining step a			
Surface tension	Rate constant	ثابادت سرعت	Orbit	هدار، الوربيت
	Rate equation	هـهادله	Orbital	اوربيتال
Temperature Los	Reactant		Order of chemical reaction	
Theoretical yield بإز	Reaction intermediate			
Thermochemistry	Reaction mechimism		Osmosis السمز	
كرماثهبمى،	Reaction rate	سرعت واكتّ	Oxidation اكـباينّ	
Third - order reaction اكنش	Reducing agent	عا	Oxidation number	
Titration	Reduction	كامش		
Transition element			Oxyacid	اُكسى إسيد
Transition state theory	Resonance	رزونانس، تـّديل		
Triple point	Roor - mean - square speed		Paramagnetic substance	
torn تور				
			Partial equation	
Uncertainty principle $\quad$ eld	SI unit	Si	Partial ionic character	خصلت يونى بحرّ
Unit cell	STP molar volume	STP	Panial pressure	
Unit electrical charge, e ee e، $e$,	Salt	Soi	Pascal	\%
	Second - order reaction		Percent yield	(0)
Valence - bond theory نظّريه بيرند ظرنيتّ	Semimetal	شـبـه	Period	تناوببا بهيو土
Valence - shell elcctron - pair repulsion theory	Shielding	-	Periodic law	فانون تناوبي
	Sigma bond	بيون	Phase	¢
Valence electrons	Significant figures	ارقام با با با	Phase diagram	نسودار فازم
	Simple cubic unit cellosho me		Proton	\%
Vapor pressure	$s^{2}$ ion	s	Pi bond	بيو
Viscosity	Solute		Polar covalent bond	بيون
	Solution	0rad	Polyatomic ion	
van der Waals equation معادلّ	Solvent	Jlo	Polyatomic molecule	000
van't Hoff lactor	Specific heat	ك\%	Polyprotic acid	أسيل
	Spectator ion	يون تمانشاكّر	Positive rays	
Wave function تأب م-	Spectrum	ط	$p \pi$ - $d \pi$ bond	p
Wave leagth b	Speed of light	سرعت نور	Precipitation	
Weak acids and bases السبدها	$s^{2} p^{6}$ ion	$s^{\dagger} p^{\dagger}$	Pressure	فُشار
Weight	Standard solution	هعهلول اسنإندارد	Principal quantum number عدد كإنتوهى الصملى	
	Standard temperature and pressure (STP)		Product	فراوردهن، هحصرل
X - ray diffraction		دما و نشار استانـارد	Proton	بروتون
	Strong acids and bases	اسيبلها و و بازهاى توى توى	Quantum	كوانتوم كوانتو هn
Zero - order reaction ${ }_{\text {, }}$	Structural formula	فرمول ساختارى		




Radioactivity		Electrolyte	الكتروليت	Hydration	
Cathodic ray		Electron	الكترون	Electronic configuration	
Proton	برّونون	Electron affinity		Actinoids	آكتينوئنها
$p \pi-d \pi$ band	p	Electronegativity	الكترونزانیاتيوى	Actinides	أكتينيدهـ
Pi bond	بوبون			Ampere	
Sigma bond	بيوبند	Valence elcectrons		Enthalpy	آنتّاله
Covalent boind		Energy	انرزي	Enthalpy of hydration	
Polar cowalent bond		Binding energy		Enthalpy of solution	
Hydrogen bond		Bond energy	انزانى	Enthalpy of vaporization	أكنالِّلى تبخر
lonic bonding	بيوند بونى	Internal energy	انكر)	Enthalpy of crystalization	آنتالهى نبلور
		Lattice energy	انترزي شبك	Enthalpy of condensation	آلتّالِ
		Energy of activation		Enthalpy of formation	
Electro magnetic radiation		Ionization encrgy		Enthalpy of sublimation	آنتاليى تصعبد
Gamma radiation	Vا	Orbital	إربيتيال	Enthalpy of fusion	آتّالِّل ذوب (\%
Wave function	تابع برجى	Molecular orbital		Enzyme	
Evaporation	تصنير			Anion	أنبّ40
Energy level	\%راز انرّ	Bonding molecular orbital			
Compound	تركيب) -	اوربيتال هو لكولى ضلـيوندى		Alom	-1
Binary compound	تركيب دوتايع	Antibonding molceular orbital		Significant figures	ارقام با هعنى
Ionie compound	تركيب يونى	Isoelectronic	ابزوزالكترون	Stoichiometry	استوكيوترى
Disproportionation	ت-	1sotope	ابزد توبّ	Osmosis	اسهـ
Sublimation تصعيد				Acid	\|
Equilibrium		Formal charge	بار تراردادى)	Arrhenius acid	اسيبد آرنيو
Chemical equilibrium		Effective nuclear charge	بال هسنهاي مأثّر	Polyprotic acid	
Heterageneous equilibrium	um	Base	ب	Weak acids and bases	
Distillation$d^{10} s^{2}$	隹	Arrhenius base	باز آرنبوس	Strong acids and bases	
	$d^{1} s^{4}{ }^{\top}$	Actual yield	بإزده - إِيفى	Monoprotic acid	السيد
Period	تنارب.	Theoretical yield	بالدهه نظرى	Positive rays	
torr	توز	Bertholide	برتوليّد	Avogadro's principic	الصل آلّ
		Effective collision	برخورد هـئر	Exclusion principle of Pauli	اصحل طرد
Maxwell - Boltzmann distribution		Crystal	بلور	Uncertainty principle	الصل عدم تطنيت
Titration	تيتر كردن	Closest - packed crystal	بك بور	Le Chatelier's principle	الصال لوشاتلبّ
		Reaction quotient, Q	Q ، ${ }_{\text {Q }}$	Oxidation	اكـسابِّ
ثابت افزايشّ دمأى جوثّ مؤى				Oxyacid	اُكــى اسبد
Molal hoiling - point elevation constant		Pascal	بإِّ	Acidic oxide	
Equilibrium censtant	ثإبت تعادل			Basic oxide	اكــبد با با
Rate constamt	تابت سرع	$X$ - ray diffraction		Amphoteric oxide اكسبد دو خحملتمى (آمنوترى)	

## فهو

$$
\begin{aligned}
& \text { 1r9.ITt ITH }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IV بارنالكترون }
\end{aligned}
$$

$$
\begin{aligned}
& 119 \text {. } 11 \mathrm{r} 611 \mathrm{Y} \text { بارقراردواد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { THF ، TrA بازداري زنتجير } \\
& \text { FA، FH باز } \\
& \text { fA ، fF باز } \\
& \text { بالكن حتحمسنجى }
\end{aligned}
$$

IVV براگ، ويليام هنرى
IVF بلور شبكهالى كوارتي
IVQ بلر
iAT ، IVF LA بلو
IVr
IAF ، IVA ، IVH
OF ، 00 بـب
Vo بوهر، نيلس
TQA rQ TQ1 بهر واكتنش
بيوشيمى

$$
\begin{aligned}
& \text { No گإولى }
\end{aligned}
$$

14،1人 بروتوت

$$
\begin{aligned}
& \text { YYO ، YIF اسيلد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rov ، الكتروليتهاى ضعيف } \\
& \text { rov ، الكتروليت } 199 \text { الكاى قوى } \\
& \text { IV الكترون }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الكترون }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 119،110 الكترونكاتيون } \\
& \text { AQ ، الكترون متمايز كتنده }
\end{aligned}
$$

$$
\begin{aligned}
& \text { انتحراف مثبت } 19 \text { ان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { gF or or انرّ } \\
& \text { or انز }
\end{aligned}
$$

$$
\begin{aligned}
& \text { } 91 \text { انتز } \\
& \text { انر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { انوأع يونها } \\
& \text { 19.vQ اوربيتال } \\
& \text { اوربيتال بيوندى سبيگا }
\end{aligned}
$$

Yol، INA، IAV آببوشى آبَ، دماي انتجماد آبّ، دمای جوش آب شيرين آبي




آتاليز شيميايى



 آنتالЈى تبلور مولى IV．آلى آنتالِي تشكيل



1入0، IV9 انتّى نلونو
TFF，TFM أنز
IFA، Mr آوركادرو، آمادئو
 ارشميدس اون 11
｜r ارقام با بعنیN استالاكتيت ro استالاكمكيت 10



rol اسمنز
19V اسمز معكوس Tro، rir
TY0، rIT اسيدها و بازهالى آرنيوس



	19. ${ }_{\text {\% }}^{\text {1 }}$	
	غrvo غلظت و زمانو	
كF\| كاتاليزور همكا		
	غor	
\%10 كاكس		
كالرك \%ror	IV فارإه، ميكاييل	
r كالكس	G4 ، هr هr	
	فاز	
كHy ، Try		
كوانتا 94	فركانس 91	
199 كوه		
19 كيمياكّ شكا		
	rv, ra فرمول	
\%149	فشار 1r9	
	فشار بحرانی	
An.19.tr		
كالليله كالبلئّو 149		
	\|V	فثار بخار يكا
10\% كراهام ، تامس	فلز	
94.ar or	فلزِّ	
Of ${ }^{\text {Of }}$	فلؤيستون	
dt ك\%		
	ITT	
צكلوكز ب\%		
190.1*A.\|f1		
	قانون بقاى جرم	
لالنتانويدها		
لاوازيه، آنتوان		
AQ • AV لا		
لوويس،		
- مادهٔ ناهماكن		
	90.94 ، OV 6 قانون هس	
مإيعات		

$$
\begin{aligned}
& \text { ifl شارنس } \\
& \text { VF شرودينگار، الروين } \\
& \text { Ar شعاع اتمى عنا } \\
& \text { شعاع وان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IVV شممارندة: } \\
& \text { H10 شيش } \\
& \text { شيمى آلى } \\
& \text { ش شيمى تجزيه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { شيمى فيزيكـ r } \\
& \text { هr شيمى گرمايـي } \\
& \text { شيمى معلنى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { خريب وانت هوف 199 1، } \\
& \text { طبقهنبندى ماده } 9 \\
& \text { bA bول موج } \\
& \text { Qo.vo bo ber bern } \\
& \text { Vo bيف طيوسته } \\
& \text { br bيفنار جرمي } \\
& \text { و4 ، DF ظرفيت كرمايـي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROQ عامل كاهـ }
\end{aligned}
$$

> عد عدد اتهـى
> عTL، عدد اكسايش
> ro عدد

$$
\begin{aligned}
& \text { عدد كو انتر مى منتاطيسى اسبيين VA، V9 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { عناصر واسططه }
\end{aligned}
$$

عنصر "r،

10人 + 10V
 |ft, |f|



$$
\begin{aligned}
& \text { vo رأبطi دوب: } \\
& \text { رادرفزر } 19 \text { ادف الرنست }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1Y0 ، } 119 \text { ، } 119 \text { رونانتس } \\
& \text { ورتيل }
\end{aligned}
$$





زوج Jre ، ITr زوجهاي نإيبوندي

زول ورن 9
 Ar ساختار الكترونى عناصنـر IVA ساختار بلورى فلزات

IOV ساختازهاي ثيوند ظلرفتيتي
 IIV ساختارهایى رزونانسانسى 1r. . 110 . 11 r .10 V V M1 • IVA سانا


هr سانتيگرادف مقيابي THF KH WH سرعتهای هولكولى 1 سر vi سرى بالمر V) سرى پاششن VI سري ليمان
 سKY سورمكاتاليزو MTY, KY0 HIG سic

سو 1 ستر
 140 سينتبك شيميايـى THK

جامدات 19 F
lar ، IVT جامدات بلوري
1A1،1Vo جامدات بـش


TFF, THT جذ جذ سلب

 جذر ميانگین محذر Mr 14 14 \%
O
 10.1世،11 قات IVA جند شیلى (آلوترويی) Tr| IYF Zجار وجهى نامنتظم

حالت برانگيخته VI حالت حا 199 حالت ماني





118،110 خحصلت يونى جيزئى
 خ01، خواص كو ليكاتيو

IV داوى، همفرى
IV دالتون، جان 19
91 91 امتئ مون درجهة 10 درصد

FA ، FF F

$$
\text { دستگاه مترى Ir ، } 9 \text { ، } 0
$$

IV9، IVQ دستعاه مكعبى gf. ot or

GY، $\Delta F$ einloo


19 19
بريرد



HF H بيون
1r9. Ir9 بيون
| 1 هيوند
l 1 , V V

بيوند فلزی
1०v، 94 rيوند كووالانسي
|NT، |N|، 190





IA تامسرن، جوزف
تبخير 19V
تركيب
تركيب دوتايى 19611A

تشكيل بيوند بركشت
IOV تشكيل يبوند كورو الانسي
TQA ، YYQ تعادل شيميايايكي

roA ، ror تص
HTO تعيين سرعت واكتش

O تغييرات فيزيكى

تناوب rr

109، 10r توزي

vo ثابت






rrl.rT0.r.a








 IF،
TG، TY وزن HV،r وز وزن فرمولى ونى


 VQ هايزنبرگ، ورنـرن

 TV.T9. 19 هستةً اتم هشتو جهي منتظم




همفشار $19 V$
هنري، ويليام 148
هواسنع
هـيريد شدن هو

$$
\begin{aligned}
& \text { r } \\
& \text { ro\&ract بون }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بون يك اتمى }
\end{aligned}
$$


 K\&Q، THQ مو لكو لاريته ميانگِن انرزى بيرند

نامُخذاري آنيونها

|T|، انامُخلارى تركيبات كووالانسى


نامكُذارى كاتيونها



نظرئ
نظرية اتمى 19
TV ،19 نظرئ اتمى 2 التون
TFF، YTY تظرئن برخرد
Vo نظريةٔ بوهر


تظريهُ كواتتومى 99
1人0 जقص نقر
|AI ، IVT تقنهُ سه كُاته

IT، 9 ، F F تماد شيميايـي
ro نمادهاي اتمى
|AI IVI نمو
r9، نوترون
Yo نوكتون



rro،ron نيم واكتش
THY، Yry نيمه عمر HF
نيمه فلز rer rer
19 نيو تونغ ايزاك

4 واحد احلـد
1A واحد بار الكتريكى واحـي
واحد تكميلي

واكنش بركشتناهذ ير ب\&q
f 4 , fo اكتُ

محاسبات شيميايی 4، 4 4
محلول
FIS. مسلول استاندارد


 MA محلول فوق سير

1 1
محلولنهاى الكتروليت 199




مخلوط همكـن

 مراحل يكاح مولكولى





K9، FA ، FF ، FO O
OD مر


rrg معادلئ سرعت يك واكنش
V9 معادلّ شرودينظا
م
1AY, 1А1،199
منهرم آرنيوس IfY مقياس كلوين
THF، THA مكانيسم زنجيرى


IVQ مككعب مراكز وجوه

VT مندليف، ديميترى مري
No مواد شيشـه مانند
 rot مونعيت تعادل
rvarr or


[^0]:    

[^1]:    1. Significant Figures
[^2]:    1. Archimedes
[^3]:    

[^4]:    1. Kohann W. Döbereiner (1780-1849)
    2. John A. R. Newlands
    3. Davy Mcdal
    4. Royal Society
    5. Julius Lathar Mayer
    6. Dimitri Mandeleev
    7. Henry G. J. Moseley
[^5]:    1. Subsidiary quantum number
[^6]:    1. Hund's rule of maximum multiplicity
[^7]:    1. Regular octahedron
[^8]:    1. Bond order
[^9]:    1. Back bonding
[^10]:    1. Jacques Charles
[^11]:    1. William Thomsen, Lord Kelvin
[^12]:    1. Mean free path
[^13]:    1. Compressibility factor
[^14]:    1. Johannes van der Waals
[^15]:    1. James Joule
[^16]:    1. William Henry Bragg
    2. William Lawrence Bragg
    3. Geiger Counter
[^17]:    1. Raoult's law
[^18]:    1. Colligative properties
    2. Semipermeable membrane 3. Osmosis
[^19]:    1. Metathesis reaction
[^20]:    1. Disproportionations
    2. Auto-oxidation-reduction reactions
